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Executive Summary 
We are providing a summary of the two main efforts in this technical report. This includes the 
work done on the AFRL-UNM High-End Reconfigurable Computer (HERC) and the Adaptive 
Wiring Panel (AWP).  

New requirements for on-board spacecraft processing systems demand solutions with high-end 
computation capabilities, reconfigurable logic for hardware acceleration and processing 
properties, as well as the ability to easily interface with different types of sensors and sub-
systems. Additionally, it is desirable that the architecture of the systems be modular, easily 
deployable and versatile, while limited in weight and size. 

This work describes the AFRL-UNM High-End Reconfigurable Computer (HERC), a new 
multiprocessor architecture for use in high-performance on-board space applications. This 
architecture was developed to have modular and compact basic processing nodes, interconnected 
by high-speed communications links that aggressively embed most of their components in Field 
Programmable Gate Arrays (FPGA).  

We also present an approach for developing the concept of a manifold of adaptive wiring cells 
connected as a single overall Adaptive Wiring Panel (AWP). The main use of the AWP is related 
to affordable plug-and-play space applications but the concept can be used for different 
applications. A reconfigurable switch fabric enables dynamic routing of signals and power 
(power, digital, and analog signals can be routed for space systems. This concept can also be 
applied to terrestrial applications such as aircraft wiring and ground-based systems, for example 
dynamic routing of media such as light or fluids is also possible using the same fundamental 
switch architecture. 

The AWP is a manifold of adaptive wiring cells cast as a single overall panel. The panel is a 
pegboard-like structure, which does not articulate specific sockets, but rather provides a 
continuous grid of contact pads and mechanical mounting holes. Implementation is based on 
three basic elements: (i) cell units (CU), (ii) a cell management unit (CMU), and (iii) modules. 
CUs are the minimum independent units of the AWP, each with interconnections and links with 
other cells to form the switch fabric by which we wire components to each other. The CMU talks 
independently with all CUs and manages the wiring path and panel switch connections. Inter-
Integrated Circuit (I2C) is the protocol used for all the communications. Finally, modules are the 
“widgets” that make up components to be wired (e.g. power supplies, gyros, thermistors, 
resistors, LEDs, etc.). The modules can be plugged in at any orientation, which is detected by the 
CUs. We present the results related to the current compact version of the AWP based on 5x5cm 
cell units. Some of the advantages of this version are the elimination of internal cables and the 
inclusion of I2C repeaters.  
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1.0. Introduction. 
Our final technical report is primarily focused on the description of our efforts in developing the 
Adaptive Wiring Panel (AWP) and the AFRL-UNM High-End Reconfigurable Computer 
(HERC). When describing the HERC, we refer to the Ph.D. dissertation by Jorge Parra [1]. 
Furthermore, much of the material for describing the AWP has been taken from [2][3]. 

 

1.1. AFRL-UNM HERC Prototype [1].   
To investigate the properties of the HERC architecture, a prototype was constructed and studied. 
Benchmarking applications were run on this prototype to characterize the performance of its 
embedded microprocessors, its memory system, its communications network, and the 
performance of the system in a multiprocessor context. This analysis is accompanied by 
comparisons to related architectures that identify the position the HERC occupies in an 
architectural space. Also, analyses of the power and resources utilized by this architecture were 
performed. 

This work defines a new multiprocessor architecture for use in high-performance, on-board 
space applications. It focuses on utilizing Field Programmable Gate Arrays (FPGA) and their 
embedded components as the primary devices for general-purpose multiprocessor computations. 
This work also develops the necessary hardware and software modules required to create the 
supporting communications network. Finally, it evaluates the resultant system in order to 
determine its strengths and weaknesses when used in this particular application.  

The main innovations and contributions of this research are in the areas of multiprocessors, 
computer architecture, and space vehicles systems. They include: 

 The definition of a new multiprocessor reconfigurable architecture for its use in space 
vehicles, utilizing FPGAs, and the modules embedded on them, as the main components of 
the system.  

 A functional prototype of this architecture used to validate its feasibility, and to evaluate its 
final characteristics. Simultaneously, this functional prototype is a unique platform that can 
be used in the simulation and development of new complex designs, involving software and 
hardware for multiprocessor systems. 

 The analysis of the performance of the main modules of the prototype, focusing on the 
relevant areas with respect to the new generation of space vehicles. 

 Recommendations, based on the results found in the prototype, about the characteristics, the 
advantages and disadvantages that a reconfigurable multiprocessor, like the proposed one, 
should have in the context of hardware and software for space vehicles.  

 

1.2. Adaptive Wiring Panel (AWP) 
In vehicular platforms, the network of wires that connect sensors and actuators to other electrical 
boxes is referred to as a wiring assembly or wiring harness. The wiring harness plays a critical 
role in distributing signals and power throughout the platform. These wiring harnesses are 
intensively custom, often expensive, and can take a long time to build (i.e. months). As such, the 
wiring harness can be a limiting factor in the time necessary to build a new system from scratch, 
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even if all components and software are available for the new design. Conventional spacecraft 
wiring harnesses are built with architectures that are fixed at manufacture. By implementing 
reversible (meaning they can be changed repetitively) and dynamically programmable software 
wires, we can form an “adaptive wiring manifold”. Adaptive wiring systems have many useful 
properties. They can, for example, be customized quickly, within seconds if the wiring 
configuration is known. They have tremendous flexibility in that they can be changed up to the 
last moment of a system’s development without removing components and performing 
painstaking rework. They also have the potential of self-healing and enhanced diagnostics 
through soft-definable probe signals. 

Here, we explore the concept of an adaptive wiring manifold (AWM), a wiring harness that is 
reconfigurable and scalable for general applications. In principle, it is like a field programmable 
gate array (FPGA), which is a chip that can be programmed to implement wiring patterns, except 
that our adaptive harness allows for the routing of continuously variable analog, power, and 
microwave signals (FPGAs, in general, can only manipulate Boolean signals). Since an AWM is 
pre-built and soft-configured as needed, it supports the rapid development of platforms (such as 
spacecraft). We envision that this might be achieved by assembling a number of tile-like panels, 
each a “smart substrate” containing a portion of an AWM, to form the overall wiring harness of 
an entire platform. Components can then be mechanically and electrically attached to panels in 
the simplest cases completing a platform build cycle. In this manner, we can reduce the time 
from building some custom systems from months to minutes. 

We will present the concepts for adaptive wiring architectures. Then, the architecture for cellular 
adaptive wiring manifolds. Next, we present the hardware and software details for the 
implementation of the current prototype built. We finish with the conclusions. We will use the 
words “manifold”, “harness”, and “assembly” interchangeably, though the latter term will also 
be used to refer otherwise to aggregations of components. The meanings should be clear by 
context in discussion. 

 

2.0. Methods. 
A synopsis is provided.  For the complete details, please refer to [1]. 

 

2.1. AFRL-UNM HERC Prototype. 
A digital system designed to be a high-end general-purpose processing module to be used on a 
space vehicle must comply with some special requirements. We have identified that these 
requirements could be satisfied with a new architecture based on High-End Reconfigurable 
Systems (HERCs). This architecture, which borrows characteristics from Massive Parallel 
Processors (MPPs), is made up of a collection of reconfigurable processing nodes interconnected 
by a high-speed communications network.  

We introduce the AFRL-UNM High-End Reconfigurable System. We also elaborate on how this 
system satisfies the special requirements imposed by this particular application, and what 
portions of this architecture will be implemented in a prototype. Creation of this prototype has 
allowed validation of the feasibility of the proposed system, as well as an opportunity to study 
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the advantages and disadvantages of its modules, in the context of the aforementioned 
application. 

 

 
2.1.1. Definition and description of the AFRL-UNM HERC  
The AFRL-UNM HERC is a reconfigurable, multiprocessor, general-purpose high-end 
computer. Its design is mainly focused on modularity and scalability while providing a 
reconfigurable, microprocessor-based platform. It was also conceived to explore the tradeoffs 
involved in designing a multiprocessor system constrained by the fact that all the main 
processing blocks are embedded in FPGAs.  

Reconfigurability in this system is defined as its capability of partially changing portions of its 
hardware, upon user’s request. This capability is inherited from the FPGAs on which this system 
is based, and is accomplished by changing the data used to program the interconnections 
between the resources available on the FPGA.  

The main component of the system is the Basic Module (BM). It is a completely functional 
computational unit, composed of a Xilinx Virtex-4 FX100 FPGA, two DDR2 memory modules, 
a USB 2 host interface, Ethernet, System ACE, Analog-to-Digital Converters (ADCs), and four 
networks. A single BM can be used as the processing unit of a single-powered system or as the 
building block of a system with a medium or a large number of processing units.  

 

2.1.2. The Interconnection Network 

The AFRL-UNM HERC has four communication mechanisms implemented on each BM. The 
first mechanism is based on the Ethernet 10/100 protocol. Although this network is not initially 
intended to be the main communications support for HERCs with a large number of BMs, 
analysis of its performance was studied. The Ethernet network is also intended for 
communications with external networks, to broadcast commands to every component of the 
system, or to be the main communications port in systems powered by a single BM.   

The Rocket I/O-based connections form the main communication medium of the ARFL-UNM 
HERC. It is a distributed, message-passing network fully linking a BM with its neighbors in a 
mesh structure. The advantages of such networks are bandwidth, scalability, and fault tolerance.  

As for the second mechanism, a BM interconnects a group of BMs on other levels as well as 
those on its own level. This structure also offers advantages when hierarchical configurations or 
data distribution configurations are implemented. 

The other two communication mechanism implemented on the AFRL-UNM HERC are a 
common bus structure and the JTAG connection. The common bus structure is a 24-bit bus 
implemented in clusters of BMs on the system. Its function is to carry low-speed commands and 
broadcast messages. Finally, the JTAG network serially connects all System ACE and FPGAs in 
the system. 
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2.1.3. AFRL-UNM HERC Microarchitecture    
The microarchitecture of the AFRL-UNM HERC refers to the hardware portion that is necessary 
for the system’s proper operation and that is embedded in the Virtex-4 FPGA fabric. It is divided 
in three main portions: Peripheral interfaces, inter-board, and inter-core communications. The 
Peripheral interface groups the circuits intended to interconnect the processor and the 
peripherals. 

Each Basic Module features two PowerPC microprocessors, and two DDR2 memory controllers 
attached to the Peripheral Local Bus (PLB). These two elements form a minimal functional core 
linked to the rest of the system through the inter-core connection, the inter-board communication 
links, the common network, and the JTAG chain.  

It is important to mention that the microarchitecture design is dependent on the FPGA 
performance and the availability of its resources. This design has to account for the reasonable 
use of these resources, saving enough of them for the implementations of the applications used in 
the HERC’s mission. 

 

2.1.4. Operating System and Supporting Software  
The AFRL-UNM HERC is a message passing system hosted by a Linux kernel as shown in. 
Montavista Linux, a Real-Time Operating System (RTOS), was chosen as the operating system 
to run on each BM. The Linux kernel interfaces with the Rocket IO network, the JTAG network, 
and the Common Network through custom-designed drivers. To provide message-passing 
capabilities OPEN MPI, a Message Passing Interface platform, was chosen. It is based on 
Remote Shell (RSH) or Secure Shell (SSH) and a TCP/IP stack hosted by the operating system. 

 

2.1.5. The AFRL-UNM HERC and the special constraints for an on-board system for space 
vehicles  
The proposed HERC is a modular system, whose computing power scales as more Basic 
Modules are added to its network. Simultaneously, its network bandwidth scales when new BMs 
are added. This property simplifies the system’s deployment and increases its versatility in 
diverse mission scenarios. Therefore, simple missions can use a HERC with few Basic Modules, 
while complex missions can require a system with a large number of them.  

The reconfigurable properties of the proposed HERC, its multicore and its multiprocessor 
capabilities, qualify it to be able to process high-end software, enhanced with hardware 
acceleration. In this scenario, systems implemented in the HERC can exhibit independent 
hardware processing modules, hardware tailored coprocessors, dynamically reconfigurable 
systems, and other types of data processors (i.e. systolic systems). These distributed 
computational capabilities can be exploited to implement systems with error mitigation 
capabilities.  

Hardware reconfiguration also leads to hardware reusability. As an example, a modular hardware 
system can be used in a first stage of the HERC’s mission. When that stage finishes, some 
hardware modules can be reconfigured, and recycled in following stages of the mission. This 
characteristic is very attractive for space systems, where reduced hardware dimensions and 
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weight are important constraints. However, it is important to mention that reconfiguration in 
these systems are achieved at slow rates.  

The proposed HERC features a distributed, robust and flexible communications network. The 
multiple links that each BM features create redundant communication paths, useful in the event 
of BM failure and recovery. This network also allows configuring BMs that are only dedicated to 
data processing tasks, and others dedicated to peripheral interfacing. As is the case with the 
peripherals featured in the prototype of the Basic Module (the USB2, the System ACE, and 
UARTs), BMs featuring other interfaces and peripherals can be built, and linked to the network. 
Also, the FPGA IO capabilities can be used to interface to legacy systems, allowing peripherals 
that were not originally created for use with this system, to be hosted in the AFRL-UNM HERC.    

The proposed HERC uses standard interfaces and commercially available tools. Its operating 
system is fully Linux compliant, allowing any software developed in any Linux distribution to be 
easily ported into this platform. The system utilizes standard GNU C and C++ compilers and 
libraries. As mentioned earlier, it uses OpenMPI as the high-level message-passing engine. This 
allows users to develop applications for the HERC in standard Linux multiprocessor architecture 
running OpenMPI. Similarly, the system’s hardware portion was completely developed using 
commercial Xilinx, which allows hardware developments based on any Xilinx development 
board to be easily ported to the HERC. 

 

2.2. AWP architecture. 
2.2.1. Adaptive Wiring Architecture Concepts. 
In the current wiring concepts with the exception of the plug-and-play architecture, the harness 
configurations are fixed and cannot be changed easily. In the case of the plug-and-play 
architecture, we reviewed a limited form of adaptiveness, in which a number of modules could 
be freely commuted on panels, and the panels themselves can be composed to form a larger 
system. In this section, we present a far more powerful form of adaptive wiring architecture. In 
this architecture, we demonstrate a much greater flexibility in the types of modules, their termini 
count and arrangement, and the ability to reform the wiring to accommodate faults, testing, and 
repurposing to meet different needs.  

 

2.2.2. Conceptual Architecture. 
This subsection describes a number of basic principles for adaptive wiring systems. To introduce 
the basic idea, an abstract adaptive wiring structure (Fig. 1) that could be referred to as a panel or 
substrate contains a number of input/output (I/O) termini. These are shown in Figure 1(a) as 
connection points on the left (AI, BI, …) and right (EO, DO, …) edges. In the case of adaptive 
wiring, we can form connections between the termini “on demand”. We can supply a wiring 
“problem” that we wish to solve, a set of termini that we wish to connect together. Through some 
(not shown) control mechanism, we can convey commands into the panel that cause it to form 
“virtual” wire connections as desired. In Figure 1(b), for example, we show the solution of 
virtual wires needed to connect termini together bearing the same pre-fix label input on the left 
edge to the corresponding label output on the right edge (e.g., “AI” connecting to “AO”, etc.). In 
general, the wiring problem to be solved can be referred to as a netlist specification. In fixed 
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wiring systems, netlists are implemented physically in the form of a wiring harness. In this 
example, the adaptive wiring system, represented as a “cloud” within the substrate, forms the 
wiring dynamically (under program control). At this point, the adaptive wiring concept is 
notional, and we have not suggested how the “cloud” is implemented. 
 

 
Figure 1. Basic concept of an adaptive wiring cell.   

 

 
Figure 2. A physical wiring problem example.   
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Figure 2 depicts a notional implementation concept to provide some intuition about how an 
adaptive wiring system might actually be implemented. In this case, the substrate takes on the 
aspect of a physical panel featuring four sockets where components or “modules” can be 
mounted (Fig. 2a). To implement the amorphous “cloud” of wiring resources in Figure 1, a 
deliberate configuration is depicted consisting of a matrix of wires in rows and columns, with 
circles shown at the intersection points [4]. The circles represent electrical switches that, when 
closed, short together the associated row and column. We are not immediately concerned over 
the specific medium for switches. They could be, for example, metallic relays, solid-state 
switches, microelectromechanical systems (MEMS) devices, or combinations of these and other 
switch types [5], [6]. Using such a fabric, implementing a solution to a particular wiring netlist 
amounts to closing a number of switches, as shown in Figure 2(b), which shows how a netlist 
problem having two “virtual wires” or nets (involving connections between two placed modules) 
might be solved (through a total of eight switch closures). 

We can extend the concept through an approach analogous to the segmenting previously 
described. A number of substrates could be tiled together, connected through some of the 
available external termini as suggested in Figure 3. In this case, two adaptive wiring substrates or 
“cells” form an extended system. Now, a netlist solution is compound in nature, involving a 
global specification (such as “connect AI to AO”) and local specifications (the specific solutions 
of each “cloud”). The local specification involves allocating terminals between cells, and then 
defining subnet problems for each cell. It is then necessary to compute local solutions within 
each cell to implement the implied sub-netlist. It is obvious upon inspection that there are many 
non-unique solutions for a particular global netlist problem, both in terms of the allocation of 
nets between cells and implementations of the sub-netlists within each cell. 

 

Figure 3. Extended adaptive wiring system by using two cells. 
 

2.2.3. Benefits of Adaptive Wiring. 
As previously discussed, adaptive wiring manifolds offer a number of benefits in developing new 
systems. Since the adaptive wiring substrates (or panels) may be pre-built and inventoried until 
use, it is possible to retrieve them as needed and configure them on demand. Rather than wait for 
custom-defined wiring harnesses to be developed and delivered, a process that could take weeks 
or months, the adaptive versions can be configured very quickly. Unlike custom wiring 
harnesses, whose wiring pattern is permanently locked in, adaptive panels can be altered as 
needed to accommodate late-point changes. 
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Adaptive wiring systems furthermore, have two powerful benefits that are impossible in any 
other wiring technology. First, this architecture has the ability to adapt to faults that occur after a 
system is placed in the field. Since wiring patterns can be software-definable, defects could 
conceivably be fixed by computing an alternate configuration. In Figure 4, a faulty connection 
between B1-BO can be rectified by configuring other wiring resources that can achieve an 
equivalent connection without removing a system from the field (which is often impractical, as is 
the case for space systems). 

 

Figure 4. Example of the ability to adapt to faults. 
 

The second unique advantage of adaptive wiring systems is the ability to form probe connections 
for diagnostic and maintenance purposes. Temporary probes can be inserted at normally 
inaccessible buried nodes within a wiring system and removed from the system software to be no 
longer used. This concept is depicted in Figure 5. In this case, we use the adaptive wiring system 
to set up a temporary connection to check a possible problem with terminal CO on the right 
panel. 

 

Figure 5. Example of manual diagnosis of connections 
 

The techniques demonstrated in Figures 4 and 5 can be combined with algorithms to form a self-
healing system. Self-healing, as an “active” concept, can be viewed as having two phases, the 
first being diagnostic, the second being restorative. Clearly, the use of temporary probes can 
serve to probe an adaptive wiring system, even in situ, to explore the continuity of wiring 
resources. Upon discovery of defects, an algorithm in the real-time system can compute an 
alternative wiring path. In earlier AFRL-sponsored work [7] we learned it was possible to 
achieve self-healing as a linear-time process in an active system. 
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2.2.4. Architecture Description of Cellular Adaptive Wiring Manifold. 
In this section, we make the concepts discussed more concrete through an example of a cellular 
adaptive wiring manifold. It extends the notions of the scalable adaptive wiring harness, drawing 
inspiration from the panelized construction of the PnPSat-1 platform. 

 

2.2.5. Cellular Adaptive Wiring Architecture Overview. 
A simplified physical depiction of an adaptive wiring panel is shown in Figure 6. The Adaptive 
Wiring Panel (AWP) is a panel, a pegboard-like structure, which (unlike Fig. 2 or 1) does not 
articulate specific sockets, but rather provides a continuous grid of contact pads and mechanical 
mounting holes. It is a planar substrate composed by tiling together a number of cells. Each cell 
is conceptually similar to the abstracted cells shown in the two-cell concept in Figure 3, tileable 
to form arbitrary panels, such as the 8×8 cell panel shown. Each cell contains termini, both 
around the edges (for inter-cell connections) and on the top surface. These latter termini (pins) 
are the only ones that most users would experience in creating a system. 

To “use” the panel, a number of modules can be arranged on the panel surface and attached. 
These modules connect to a number of the panel pins, and in this sense, the bottom surface of 
modules can be thought of as their electrical connector. As such, this architecture implements the 
notion of a surface-mounted, blind mated connector. However, this approach allows tremendous 
flexibility over a traditional blind-mated connector in that modules can be placed in many 
locations and any of the four “Manhattan” directions (orientations). 

 

Figure 6. Cellular implementation of adaptive wiring panel. 
 

Once the modules are placed as desired, the netlist specification for their interconnections is fed 
to computer referred to as the cell management unit (not shown in Fig. 6), which computes the 
configuration for the virtual wiring in the array of cells that implement the desired wiring 
solution. 

Therefore, the AWP implementation is based on three basic elements: (i) cell units, (ii) a cell 
management unit, and (iii) modules. Cell units are defined as the minimum independent unit of 
the AWP, all with interconnections and communications with other cells, forming (by iterative 
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tiling) the switch fabric by which we wire modules to each other. The Cell Management Unit 
communicates independently with all cells and manages the wiring path and switch connections 
of the panel. Finally, the modules, being the “widgets” that make up components to be wired, 
contain some features to make it possible to integrate them efficiently (such as a small 
processor). 

 

2.2.6. Cellular Wiring Grid Convention. 
In the adaptive wiring panel, it is essential to identify conventions relating to mounting and 
electrical distribution, such as those shown in Figure 7. We define the adaptive panel as a series 
of intercalated grids, namely “mechanical”, “power”, and “signal”. Of these, the mechanical grid 
is the coarsest grid. The mechanical grid defines the attachment locations for physically 
mounting modules. We show the points on this grid as occurring at a density equivalent to the 
pitch of a “unit cell” (in our definition, we specify this to be 5 cm, although there is nothing 
special in this choice). The power grid is defined by superimposing a 2.5cm grid onto the 
mechanical grid (by convention, the point belonging to the coarsest grid “wins”, and the 
coincident points of finer superimposed grids are suppressed). The intended purpose of these grid 
points is the support of higher current wiring, consistent with those associated with the delivery 
of power. The signal grid is defined at four times the density of the mechanical grid (1.25cm 
pitch), which is intended to be the most common case in general-purpose wiring. 

For cellular implementations of the adaptive wiring panel, it is convenient to render cells as 
integer multiples of the unit cell dimension. The physical tile boundaries are offset (as shown) to 
avoid cutting through grid points. 

 

 

Figure 7. Conventions within adaptive wiring panel. 
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3.0. Results and Discussion. 
Here, we discuss results on the AFRL-UNM HERC Prototype and the adaptive wiring panel 
(AWP). 

 

3.1. AFRL-UNM HERC Prototype. 
The AFRL-UNM HERC Prototype was completely built and it is described in Appendix C. For 
complete details, please refer to [1]. 

Not every detail of the AFRL-UNM HERC definition was implemented in the first prototype of 
this system. Some of its portions were left for future development and research. The main 
objective of the development of this prototype was to obtain a hardware and software platform 
that allowed the study of key characteristics of the architecture. Simultaneously, this prototype 
was used to validate the practical use of its components in a space vehicles context.   

The first prototype is a HERC composed of two Basic Modules (BM). Although implemented in 
hardware, the USB2 module was not debugged and incorporated to the operating system. The 
System ACE, although completely developed and tested, was not used as the main media for the 
operating system. A faster solution, requiring less hardware, was found using a ramdisk to host 
the Operating System (OS), the filesystem, and using the JTAG port to load them.  

The first prototype did not use all the Rocket IO links and the topology proposed for the Basic 
Module. A more simple connection, where every Rocket IO pair in a board was connected with 
another pair in a second board was implemented. This, given the restriction of the number of 
BMs built, provided the opportunity to study the behavior of the system when a large number of 
Rocket IO links were used.  

The JTAG network and the common network were implemented in the first prototype’s 
hardware, but were not linked to its OS. As mentioned before, the JTAG chain is being used to 
upload the bitstream containing the hardware hosted by the FPGA, its operating system and 
filesystem, and for debugging purposes. It is left for future versions of the system to implement 
the failure tolerance characteristics that the HERC should exhibit using the common bus system 
and the JTAG network. 

Finally, the network interface module (also referred as network switch) was implemented as a 
mapped IO peripheral connected to a fast, general-purpose bus. Its functionality was partially 
embedded in hardware, and in a Linux networking driver. Ideally, this component should be 
designed as an intelligent coprocessor directly linked to the microprocessors through a dedicated 
high-speed port. Simultaneously, it should exhibit Direct Memory Access (DMA) characteristics 
including the necessary hardware to avoid data consistency problems. Xilinx FPGAs feature a 
Fast Simplex Link (FSL) port used to attach high-speed peripherals or coprocessors, and an 
Auxiliary Processor Unit (APU) Interface with an APU controller to assist this type of 
implementation. However, these interfaces are not completely supported in the Linux kernel, and 
its inclusion is a mayor development effort, out of the scope of this research. 

Appendix C describes more in detail the first prototype, its development and the details of its 
construction. It is useful for those readers interested in replicating the system, or building a new 
one following the recommendations included in this manuscript.  
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3.2. Adaptive Wiring Panel. 
3.2.1. First Example of Adaptive Panel Design and Implementation. 
In this section, we will describe the implementation of a demonstration adaptive wiring panel 
(AWP) system shown in Figure 9. The demonstration system (right) contains six (of 64 planned) 
cell units, a few simple modules (for plugging into the adaptive panel), and a laptop as the 
controlling cell management unit (CMU). As a programmable fabric, the AWP requires tools to 
generate specifications for implementing particular wiring solutions to interconnect “modules” 
(shown lower left). A simple graphical user interface (GUI), shown upper left, was created for 
this purpose. 

 

 

Figure 8. Adaptive Wiring Panel (AWP) concept using 64 cells in a 8x8 array 
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Figure 9. Partial adaptive wiring panel (AWP) system, containing 6 cells and 2 modules.   

 

The main objective is to design, develop and build a 40×40cm adaptive wiring panel (AWP) and 
the modules to be connected in there. For a first stage, both signal and power connections are 
programmable. The mechanical connections are fixed. In Figure 8, we show the proposed 
40×40cm panel with the connectors. The panel shown is square-shape with three types of 
connectors on it: (i) signal connectors (for transmission and reception of the signals, ‘X’ 
connectors in Figure 8), (ii) power connectors (for connecting to the source powers, ‘ ’ 
connectors in Fig. 8) and (iii) mechanical (mech) connectors (for holding the modules, ‘ ’ 
connectors in Fig. 8). The power connectors with black color ‘■’ represents fixed connections to 
ground (GND). 

Figure 8 shows an example for connecting three modules on the adaptive wiring panel: (i) a 
module with a LED, (ii) a module with a switch (to control the LED from (i)) and (iii) a battery 
module. The modules are connected on the surface of the panel. They can be placed at any 
location within the panel. Each module needs to be connected in the locations shown with a red 
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circle. We will next describe the cell unit, the modules, and the CMU that manages the 
configuration of the overall system. 

 

3.2.2. The AWP Cell Unit. 
Each cell unit (CU) is an “atomic” element, a minimum independent unit required to create the 
AWP. Its logical architecture is shown in Figure 10. A rectilinear tile that connects to its nearest 
neighbors in all four directions is referred to as a “NEWS” (north-east-west-south) network. 
Each edge (detailed only for the “east” port) contains a local communications port (for inter-tile 
information sharing), as well as pins for routing wiring connections between other edges and the 
primary surface array of contact pins. The surface array is the primary set of termini that are 
user-accessible. These are intended to support connections to matching pins present on 
“modules”, which are to be surface mounted onto an AWP. “Modules”, as will be discussed, are 
intelligent assemblies, and as such, require communications. The cell-module I2C port provides 
support for this purpose. Finally, a single “cell common I2C port” is provided to support 
communications to the cell management unit. Unlike the other I2C ports, which are implemented 
as point-to-point interfaces, the common I2C port is connected to all cells in an AWP. 

The cell functions are managed by a “cell local processing unit” (fully implemented in hardware 
using FPGAs), including the six communications ports, cell status functions (such as maintaining 
a globally unique identification code), and configuring the switches connecting the wiring 
resources in the cell. (additional details are described in [2]). The functions of each CU are: 

1. Control the programmable connections of the AWP. 
2. Communication with (up to) four neighbors: each CU needs to communicate with its 

physical neighbors to recognize spatial orientations. 
3. Read “electronic datasheet” information from modules (each module has a probe pin which 

sends module specifications to the cell it is plugged into). 
4. A low current power supply will be sent to power the modules to enable transmission of 

electronic data sheet information through predefined probe pins. 
5. Communication with the cell management unit: each cell unit transmits and receives 

information to/from the cell management unit (i.e., cell units aside from neighbor recognition 
cannot communicate directly with each other). Each cell block, upon system power up, will 
send identification information such as ID of the CU, the IDs of its neighbors and relative 
orientations, and module Electronic Data Sheets, if connected to that CU. 



    

15 

Approved for public release; distribution is unlimited. 

 

Figure 10. Cell unit logical architecture 
 

Figure 11 illustrates the physical embodiment of an AWP cell unit in our prototype. Each AWP 
cell consists of 5 boards: 

1. Top board is where the modules are placed. 
2. South board is the main board where the main hardware is placed: a FPGA with all the logic 

control, the relays to close the connections, and extra hardware (for example, to reconfigure 
the FPGA for updates of the system). This board controls the rest of the boards. It includes a 
connector that connects to the North board of a neighboring AWP cell. 

3. East board is connected to the West board of a neighboring AWP cell. 
4. North board is connected to the South side of a neighboring AWP cell. 
5. West board is connected to the East side of a neighboring AWP cell. 
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Figure 11. Cell unit of the AWP 

 
Figure 12. Block diagram of the hardware design in each FPGA cell unit.   
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The CU has been fully implemented in a FPGA using VHDL. The CU hardware design is 
depicted in Figure 12. It consists of a main control unit, internal memory units, and I2C blocks to 
communicate with every other component of the AWP. 

The I2C blocks required (all of them designed and implemented in the FPGA) are: (i) 4 for 
communications with the neighbors, (ii) 1 for communications with the CMU, and (iii) for 
communications with the module. The objective of the last 4 I2C blocks is to detect not only the 
module but also its orientation: 0°, 90°, 180° or 270°. 

The CU unit can be divided in three parts: 

1. Cell block board: it consists of: 
 Cell block pins (Y1-Y12, Z1-Z3). 
 I2C connector: It is utilized to send information from the module to the cell. An I2C 

connection is used. 
 Mechanical connector: Since we need to detect the module orientation, we use an array of 

four I2C connections (16 pins). Only one connection is active though. When the cell 
block is rotated, the ‘rotation board’ 2×8 connector pins (that remain fixed) will have a 
different pin configuration that will enable the FPGA board to detect a different module 
orientation (see Figure 13). 

2. Rotation board: the mechanical connector has 4 × 4 pins so that it is possible for the FPGA 
board to detect the module orientation (see Fig. 23). This ‘rotation board’ translates the cell 
block rotations into a set of 4 I2C connections so that one specific rotation activates a specific 
I2C connection. 

3. Relays board: it provides the following functionality: 
 It houses the 71 relays that are controlled by the FPGA. 
 It routes the cell block pins (Y1-Y12, Z1-Z3). 
 It transfers information (signals and power) between different neighbors. These 

connections are for the ports X1-X16, U1-U3, and GND. 

 

Figure 13. Mechanical connector with 4 sets of I2C connectors to detect the modules.   
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Figure 14. I2C block to be placed in the cell blocks 

 

In terms of the I2C block, Figure 14 shows the block with inputs and outputs, for the I2C block 
designed. The inputs are shown on the left and the outputs on the right (except for SDA that is 
input-output signal). We describe each signal in Table 1. This block is based on a state machine 
to control the seven states in an I2C communication: 

1. idle: no communication has been started, 
2. send address: the CMU sends the address of the cell block to be read, 
3. read/write: the CMU sends the signal to define a reading or a writing operation, 
4. acknowledge: if the address sent by the CMU is the same as the cell block, the cell block 

places a low signal in the SDA line, 
5. send data: if the acknowledge was true, the data is transmitted during this time. When the 

read command was sent by the CMU, the cell block sends the information using the SDA 
line; otherwise (write command) the CMU sends the information using the same line, 

6. acknowledge: if an acknowledge signal is sent again, a new data is sent (going back to the 
state (v)), and 

7. stop: when the communication is finished, the CMU sends a stop signal using both the SDA 
and the SCL lines. 
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Table 1. Description of the ports of the I2C block designed using VHDL 
Port Name Direction Size (in bits) Function 

reset Input 1 Reset the system. This asynchronous input sends all the internal and 
external signals back to the default values. 

clk50M Input 1 Clock signal. The Spartan3E board uses a 50 MHz oscillator. The 
input frequency is internally reduced to 100 KHz to work with the 
standard I2C adopted. 

address Input 7 Address to be set up in the cell block. We are using a 7-bit address 
size. 

load_address Input 1 Load the address. When this input is high, the address defined using 
the ‘address’ input is set up into the cell block. 

data_in Input 8 Data to be transmitted from the cell block to the CMU. 
load_data Input 1 Load the data. When this input is high, the data defined using the 

data_in input is stored in the cell block. 
SCL Input 1 Serial clock. This signal is controlled by the CMU. We are using a 

signal of 100 KHz. 
SDA Input 1 Serial data. This signal sends the information between the CMU and 

the cell block. 
data_out Output 8 Data received. When the cell block has read the data sent by the 

CMU, the data is output using this port. 
data_read Output 1 Data received ready. When the cell block has finished reading the 

data from the CMU, this output is high. 
busy Output 1 This signal is asserted high when a communication is performed. On 

the other hand, when no communication is performed, this signal is 
low. 

 

 
Figure 15. Cell Management Unit (CMU) with a typical connection to a Cell Unit 
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3.2.3. Cell Management Unit. 
The cell management unit (CMU) manages global communications and routing configurations of 
all cell units on the AWP. An architectural diagram depicting the connection to a typical cell unit 
is shown in Figure 15, which indicates the chain between the cell management unit (global), the 
cell unit (local), and particular relays (switches) controlled by particular cells. 

 
In the current demonstration system, the CMU is implemented as software running on a Linux 
machine. The basic setup for a GUI is shown in Figure 8 (top left) used to debug the mechanical 
connections and other design issues. The functions of the CMU are: 

1. Manage the communication bus (I2C protocol). 
2. Read and organize initial location/orientation information from the CUs. 
3. On a periodic basis, scan for any modules connected to a particular CU, and read embedded 

module “electronic data sheets”. 
4. Compute the global and local routing/path connections necessary to implement a desired 

netlist. The CMU has a prior knowledge of the layout of relays in each cell unit (they are 
identical in our demonstration system, but in principle the relay distribution can vary 
amongst cells). When the geometry of the AWP is formed (by assembling a tiled 
arrangement of cells), a complete graph related to the AWP and the connections is built by 
merging the subgraphs of each individual cell. After reading the module “data sheets” 
describing module contents and terminal information, the CMU attempts to compute 
connection paths specified between the corresponding terminals on the various modules 
plugged into the AWP. 

5. Command individual cell units to open or close specific relays. 

 

3.2.4. Module. 
Modules refer to components that are plugged into AWP assemblies. Before we describe them, it 
is insightful to consider how an AWP might be used in a simple design example shown in Figure 
16. A prospective AWP is shown with three modules in Figure 16(a) (a light bulb, a switch, and 
a battery) placed on the panel. The placed modules cover a number of pin locations and 
mechanical attachment points (revealed in Fig. 16(b)). These modules can be placed in any 
Manhattan direction and in any linear position so long as the mechanical attachment grids of the 
module align to those on the AWP. At this point, the AWP does not “know” what to do with 
these modules. Rather, the user placing the modules must supply this information in the form of 
a netlist. When this is done, the AWP can connect the modules by forming virtual wires, as 
shown in Figure 16(c). If a second copy of a module (e.g., an extra light bulb) is placed on the 
AWP, it intrinsically has the ability to connect to this second copy when the failure is detected 
(Fig. 16(d)). 

We now move from this abstract description of an AWP with modules to describe our 
demonstration implementation. The modules we built were 5×10cm (or 2 cell units) with 24 
signal connectors, 6 power connectors and 2 mechanical connectors (most of which need not be 
connected for a specific module type). 
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Figure 16. AWP in use.     
 

 

Figure 17. AWP with the circuit connected using two modules.   
The modules employ an electronic datasheet on a small processor resident on the module (but 
not otherwise a part of the component(s) described). The datasheet of each module employs the 
SPICE language for the netlist descriptive format [8]. It is downloaded over one of the I2C ports, 
interfacing to one of the cell processors contained in the panel, eventually being routed to the cell 
management unit. The CMU manages the database of modules and netlist connections, forming 
virtual wires on demand as needed (when it is possible to do so). 

Figure 17 shows an example of two modules connected to the AWP: the bottom module with a 
battery and the top module with a resistor and a LED (acting as the light bulb in Fig. 16). 
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3.2.5. Routing Algorithm. 

As described in [5] (for example), the wiring configurations of the AWP can be described as 
graphs, and manipulated with graph algorithms to find satisfying assignments for solving routing 
problems, as done routinely in FPGA synthesis algorithms. The basic heuristic algorithm used in 
the demonstration system can be summarized in the following pseudo-code: 

Routing algorithm: 
Generate the graph based on the current cell configuration. 

Generate a Johnson-Trotter14 ordering of the required connections. 

Apply shortest-path algorithm for each connection. 

Update graph. 

 

The algorithm begins with the graph representation of the current AWP configuration. Cells are 
sub-graphs of an overall extended (multi-cell) AWP. If the cells are re-arranged or extended, the 
change is automatically detected and the graph is re-generated. 

Once the graph has been constructed, we apply a very simple, greedy approach in an attempt to 
route all required connections of a particular netlist. Each connection is called simply a net. Our 
simple algorithm works through all possible nets in an arbitrary initial sequence. When one net is 
routed, the routing resources (wires and switches) consumed to form that route are no longer 
available for nets still to be routed. 

As one might suspect, this approach may not lead to a solution due to congestion. It is, of course, 
well known that routing problems such as these (which are referred to as graph Steiner Forest 
routing problems) are NP-hard, and require more sophisticated heuristics. As our priorities were 
on forming the elements of the basic system design, we did not extensively pursue more 
sophisticated algorithms. While we might suggest this as an “exercise for the reader”, it will 
likely be re-examined as the scale of our demonstrations increases. 

Fortunately, a rich base of research on these algorithms awaits us, and we will hope to have 
occasion to adapt them for the nuances of this novel architecture (such as “domain mapping” of 
nets into graph regions, analogous to graph coloring problems.). 

 
3.2.6. Definition Of the Commands. 
Using the I2C protocol for the communication in the AWP, we defined each command for the 
control of the cell blocks. The commands are transferred from the cell management unit (CMU) 
to the cell blocks using the 8-bit data in the I2C protocol. Thus, we have 256 possible commands. 
The commands that are already defined and implemented are shown in Table 2. 

For each defined task, the process of transferring information changes. In agreement to the 
commands from Table 2, we have defined 4 types of commands. Depending on the task to be 
performed by the cell block, we have 4 types of commands. Every single type starts with a 
WRITE I2C[9] communication. The following I2C communications depend on the type of 
command. We describe each type in the next lines, including the timing diagram for each type. 
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1. Type I: This type of command requires the CMU to perform two WRITE I2C 
communications. For example, in the case of the command 0×5A for opening/closing the 
delays, in the first I2C communication the CMU sends the command to indicate that it will 
open/close a relay using a WRITE I2C communication. In the second I2C communication, the 
CMU writes the number of the relay to be opened/closed using a WRITE I2C communication 
again. In Figure 18 we show the timing diagram for this type of command together with the 
characteristics for the 0×5A command. 

2. Type II: This type of command requires the CMU to perform a two step I2C communication: 
(i) send a WRITE and (ii) send a READ. For example, in the case of the command 0×44 for 
reading the ID of a cell block, the CMU first send a WRITE I2C command to the cell block. 
Then, the CMU performs a READ I2C command to read the ID of the cell block. In Figure 
19 we show the timing diagram for this type of command together with the characteristics for 
the 0×44 − 0×48 commands. 

3. Type III: This type of command requires the CMU to perform first a WRITE I2C 
communication and then, the CMU needs to perform as many as READ I2C communications 
are necessary. This type of command has been defined for reading the datasheet of the 
module connected to the cell block  (0×5E command). For example, suppose that the 
datasheet of the module connected to the cell block has 9 bytes. First, the CMU must send 
the WRITE I2C communication to the cell block. Then, the CMU sends a READ I2C 
communication to receive the number of bytes (9 in this example) to be sent from the cell 
block to the CMU. Finally, the CMU sends 8 READ I2C communications to continue reading 
the datasheet. In Figure 20 we show the timing diagram for this type of command together 
with the characteristics for the 0×5E command. 

4. Type IV: This type of command requires the CMU to perform a three step I2C 
communication: (i) send a WRITE (with the command to be performed), (ii) send a WRITE 
with the location of the internal address of the cell block’s status to be read, and (iii) send a 
READ. For example, in the case of the command 0×5B for reading the status of one relay in 
the cell block, the CMU first sends a WRITE I2C command to the cell block with the 0×5B 
command. Then, the CMU sends the number of the relay to know its status using a WRITE 
I2C communication. Finally, the CMU performs a READ I2C communication to let the cell 
block send the status of the requested relay. In Figure 21 we show the timing diagram for this 
type of command together with the characteristics for the 0×5B command. 

5. Type V: This type of command was implemented to read the datasheet from the modules. For 
each cell with a module connected to it, the master will start reading the SPICE information 
from the module (that has been already stored in the cell). We are assuming that the 
maximum size for the SPICE information is 256 bytes. The master sends the command 0x60 
(see Fig. 22), the memory address location of the SPICE information to be read, and then the 
cell sends the data. 
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Table 2. Definition of commands for the communication between the CMU and the cell 
blocks.  

Address  

Decimal Hexadecimal Binary Command Type Data Notes 

0 00 00000000    First available command address 

68 44 01000100 Read Cell ID II Cell ID  

69 45 01000101 Read North 
Neighbor ID 

II North ID  

70 46 01000110 Read East 
Neighbor ID 

II East ID  

71 47 01000111 Read South 
Neighbor ID 

II South ID  

72 48 01001000 Read West 
Neighbor ID 

II West ID  

73 49 01001001 Read Module 
ID byte 

II Module ID  

90 5A 01011010 Write relay I Open/close 
relay 

Bits(7 to 1): number of relay. 
Bit(0) is ‘0’ when open and ‘1’ 
otherwise 

91 5B 01011011 Read relay 
status 

IV Relay 
number 

Write command, write relay 
number, read status. 

94 5E 01011110 Read datasheet III Datasheet Number of bytes, datasheet 

255 FF 11111111    Last available command address. 
 

 

 
Figure 18. Type I command.  
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Figure 19. Type II command.  

 
Figure 20. Type III command.  

 
Figure 21. Type IV command.  



    

26 

Approved for public release; distribution is unlimited. 

 

 
Figure 22. Type V command.  

 

 

3.2.7. Command Line Interface. 
The Command Line Interface (CLI) implements the Cell Management Unit on the computer 
side. It consists of a set of functions for communication with the Adaptive Wiring Panel (AWP). 
The main purposes of the interface are: (i) detect the AWP configuration (cells and modules 
arrangement), (ii) let the user set circuit connections, and (iii) make the connections and maintain 
the circuit once the connections have been set. The Graphic Unit Interface (GUI) runs on top of 
this Command Line Interface. 

 

1. Detecting AWP configuration 

The process starts with the scanning of the I2C bus looking for all possible peripherals 
(addresses from 1 to 127). When a peripheral (or Cell) responds, it provides the cell ID, the 
ID of its neighbors, the relative location of the neighbors to the cell (North, East, West or 
South), and the information of the module (if it exists) attached to the cell. The module 
information consists of its size (either 5×5 cm or 5×10 cm) and its orientation (0°, 90°, 180°, 
270°). 

Table 3 shows an example with 6 cells interconnected. For each cell, the Cell ID is shown 
along with its neighbors’ IDs. In addition, the table specifies whether a module is attached to 
a specific cell, and if it is, it displays the module information. The AWP configuration is the 
collection of the previous information for every available Cell. 
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Table 3. AWP Example.  
Cell ID 

Neighbors 
Module attached 

North South East West 
1A 5B 0F 9E 1D Yes, 5x5, 90° 
5B  1A   No 
1D  3C 1A  No 
9E    1A Yes, 5x10, 0° 
0F 1A   3C No 
3C 1D  0F  No 

 

Based on the existing AWP configuration, the software routine creates the Cell Array, the 
Module Array, and an undirected Graph that specifies all terminal connections within the Cell 
Array. These 3 layers of information and explained in the next lines. 

 The Cell Array is a matrix that represents the arrangement of the cells with respect to each 
other. This information is vital in order to build the Graph. 

 The Module array is a structure that represents the arrangement of the Modules and the 
information of each module; this information includes the module orientation, the list of 
components, and the location of each component within the module. A module can span 
several cells. 

 The Graph with the terminal connections is an undirected graph that specifies connections 
between terminals of the same cell (through relays), and connections between terminals of 
different cells (thru wires). The connections between terminals of the same Cell are 
predefined information. The Cell Array provides us with the connections between 
terminals of different cell. 

 

Figure 23 shows these 3 layers of information for the example of Table 3. Note how the 5×5 
cm module spans 2 cells since it is rotated 90°. Also, the 5×10 cm module attached to Cell 9E 
only spans 1 Cell because Cell 9E has no neighbor to the East. 



    

28 

Approved for public release; distribution is unlimited. 

 

Figure 23. AWP example with 6 cells and 2 modules.  
 

2. Setting circuit connections 

The user is given information about the Module Array. The circuit connections are set at this 
level. Each circuit connection is defined as a pair connecting a terminal of one component 
with a terminal of another component (or maybe the same component). 

3. Make the connections and maintain the circuit once connections have been set 

The connection set is made of ‘N’ pairs. Each connection is defined as a pair. A pair is 
mapped as two nodes in the undirected graph. 

The basic heuristic algorithm to make the connections is summarized in Figure 24. An 
ordering of the ‘N’ connection pairs is generated (using the Johnson-Trotter algorithm[10]). 
We apply the shortest path to each connection pair. If a connection is not possible, we try with 
a different ordering. This process is repeated until a solution is found (exiting the algorithm 
with ‘Success’), or until all the orderings (N!) are exhausted, exit the algorithm with ‘Failure’. 

Usually, connections are not possible because the previous connections utilized nodes and 
edges, and as a result, a new connection pair might be left with no path that links them. 

Once the circuit is set, the system enters a loop in which it keeps the connections in response 
to an AWP modification (e.g., cells or modules change location, new cells or modules are 
installed). The user can always modify the connections or add more connections. Each time 
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one of the previous events occurs, a new graph is generated, over which the algorithm is run 
again. 

 

Figure 24. Algorithm to connect ‘N’ pairs.  
 

4.  Other functions 

The Command-Line Interface also provides a set of low level functions for debugging 
purposes: unconnect circuit, writing/reading data to/from a cell, reading data from a module, 
writing information (Spice datasheet) on a module. 

 

3.2.8. Graphical User Interface (GUI) for the AWP. 
The GUI was developed to ease the usage of the AWP system, releasing the necessary to 
remember different commands. It is developed based on the GTK+ library.16 The main function 
of the GUI is to keep updating the visual display when an operation executed on the panel, 
recognize user’s intention to make connections and keeps the connections when operations are 
carried out. 

The operations include changing the relative positions of the cells, moving the module boards 
over cells, rotating the module boards, programming the module boards, etc. When any operation 
is carried out, the acknowledge of the operation is displayed on three different layers of the GUI: 
(i) cell array layer (see Fig. 25), used to display the relative positions of the cells, (ii) module 
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layer (see Fig. 26), to show the rotation and relative positions of the module boards, and (iii) 
circuit layer (see Fig. 27) to draw the symbols of the components. 

 

 

Figure 25. Cell array layer.  
 

Once the user decides to make a connection, one can do some clicking on the module layer to 
make connections between pins. Or he can zoom and move the components on the circuit layer 
to make room for connections. After the components are positioned and scaled in a proper way, 
the user can just make connections by clicking the terminals of the components. A simple 
rectangle will show up to tell the user they have made a correct operation. After the user has 
finished the connection, a confirmation has to be made to let the program talk to the cells to link 
those connections. 

 

Figure 26. Module Layer.  
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Figure 27. Circuit Layer.  
 

 

Figure 28. Circuit to be implemented.  
 

For example, if we want to show a circuit as the one shown in Figure 28, first, the user can zoom 
and move the components for a better visualization. Then click and make connections as shown 
in Figure 29. Follow the number above the line which indicates the sequence of connection 
operations. 
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Figure 29. Window overview and connections made for the 2-LED circuit.   
 

3.2.9. Status of Demonstration. 
Our prototype, a partial panel containing six cells and two modules, has demonstrated all of the 
elements of the AWP described in this section. Module 1 has been prototyped as a “compound” 
consisting of a battery source (V1), a resistor (R3) and a LED (L3). Module 2, also a 
“compound”, has  two resistors (R1 and R2) and two LEDs (L1 and L2). Simple circuits of the 
form shown in Figure 30 can be composed, in which subsets of modules can be connected. 

 

Figure 30. Example of a circuit to be connected. 
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Even these simple demonstrations have considerable underlying complexity, as each cell 
contains a dedicated processor, internal wiring and 70 relays to implement local connections. 
The modules also have internal microprocessors to “explain” modules to the adaptive system. 
Our eventual demonstration will contain 64 cells, resulting in nearly 4500 relays. To manage this 
complexity, tools will be necessary. Figure 31 provides a snapshot of the graphical user interface 
(GUI) software developed for the cell management unit. 

We have successfully created a GUI that can manage the creation of circuits on the AWP. Once a 
circuit is set-up, the user can re-arrange either the cell units or the modules. The AWP will look 
for the new locations of the components previously defined and adapt the routing to connect the 
circuit. 
 

 

Figure 31. GUI snapshot of the software implemented for the Cell Management Unit.  
 

3.3. Second AWP Prototype Design and Implementation. 
After the example in Section 3.2.1 turned out to be successful, we developed a new Adaptive 
Wiring Panel Prototype. The complete AWP (48 cells) was verified to work with both the 
command line interface and Graphical User Interface (GUI). This prototype (called AWP 2nd 
Prototype) is fully operational. The hardware and software has been tested to work with several 
circuit examples.  

The current prototype uses 48 Cell Units arranged in a 6x8 configuration. Figure 31 shows a Cell 
Unit. The AWP 2nd Prototype consists of a Panel that can hold the 48 cells. Each cell connects to 
the panel via a right-angle connector. The cells are interconnected via ribbon cables, facilitating 
the plugging/unplugging of the cells from the panel.  

The components are provided via a Module Unit. Twelve (12) modules are available (6 of size 
5cmx5cm and 6 of size 5cmx10cm) that can be programmed via I2C with any circuit. Figure 32 
shows a picture of the two module types with some components attached. 
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Figure 34 depicts the AWP 2nd Prototype. Figure 34(c) shows the underside of the AWP. Figure 
34(d) shows a front view of the panel. Modules are plugged in and out on this panel. 

Figure 35 shows an example where the AWP is operating. Figures 35(b) and 35(c) show how the 
command-line and GUI successfully detect the 48 cells. Figure 35(d) shows a picture of the 
panel with 2 modules plugged in, and a working circuit. The components of the modules were 
successfully detected as can be seen in Figure 35(c). 

 

Figure 32. Cell Unit  
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Figure 33. Module Boards (5cmx5cm and 5cmx10cm) 
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Figure 34. Complete AWP 2nd Prototype.  
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Figure 35. Complete AWP 2nd Prototype in operation.  
 

3.3.1. Power Consumption of the AWP. 
The power consumption for each cell has been measured with the ES-687 clamp meter. The idle 
power (no relay activated) for a cell is about 0.42W, while the power consumption per relay is 
about 85mW.  

Figure 36(a) shows the current consumption (mA) per cell for an increasing number of activated 
relays. Figure 36(b) shows the power consumption (mW) per cell. Figure 36(c) shows the power  
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Figure 36. Power consumption for the AWP.  
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consumption for 48 cells. We can see that the idle power consumption of the AWP is about 
20.16W, and the maximum possible power consumption is about 305.5W. However, in practice, 
we expect that the average number of relays activated per cell will not exceed 10. In this case, 
the AWP draws about 60.48 W. 

With data from Figure 36, we can estimate the power consumption of the AWP in real time. The 
Graphical User Interface includes real-time power estimation based on the number of active cells 
and the number of closed relays. 

 

3.3.2. GUI Improvements. 
A new layer, called ‘Link Layer’ has been added to the Graphical User Interface (GUI). This 
layer shows the relays that are currently closed and the cells. If there are relays closed inside a 
cell, the cell turns green. By double-clicking the specific cell, the user can see the cell in detail 
with the condition of the relays (closed/open). Figure 37, 38, and 39 show an example. Figure 37 
shows an example circuit array connected in the system. Figure 38 shows the cells in which their 
relays are closed. Figure 39 shows the relays inside cell 62, the highlighted rectangle denotes a 
closed relay. 

 

 

Figure 37. Two (2) circuits in AWP system. 
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Figure 38. Link layer for example circuit in Figure 37.  
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Figure 39. Inner relays for circuit in Figure 37 
 

 

3.3.3. Gesture Detection Interface. 
The AWP Panel PCB poses some challenges with respect to the original PCB in which we test 
the gesture detection algorithms (Fig. 40). The challenges include: i) Stronger light reflections, 
ii) the green color of the AWP Panel PCB, and iii) The fact that the AWP Panel PCB (Fig. 41) is 
larger, which leads to smaller resolution for each pin of the AWP Panel. 

As a result, the Software Interface for the AWP 2nd Prototype, based on OpenCV and GTK+ 
libraries, requires a robust algorithm to compensate for the problems mentioned above. 

 

Figure 42 shows the start of the program where 3 windows can be seen: 

 Screen display: This window shows the frame captured by the camera. It also shows 
information worked out by the program like grid, corner position, and finger positions. 

 Foreground display: This window shows the results of the fore-background algorithm (a 
robust and simple method to detect the finger tips). First, a background frame is stored for 
later reference. The foreground frame is created by subtracting the current frame from the 
background frame. If the difference exceeds tolerance, it is white colored. The program first 
detects the four corners of the frame to determine the finger position. For example, if a 
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change is detected in the bottom line, it means that the finger is pointed up; thus, the finger 
tip is scanned in a top to down, left to right fashion. If a change is detected in the left border, 
then the finger tip is scanned in a right to left, top to down fashion. 

 Control Panel: It provides a set of buttons and boxes to configure the procedure parameters. 
Also, it features a tree view widget to show the connections set by fingers. 
 

 

 

Figure 40.  Original PCB Board for testing purposes 
 

 

 

Figure 41. Actual PCB Board (AWP Panel) 
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Figure 42. Graphic Interface at the Start of the Program 
 

After the program is started, the corners are set up, so the grid can be generated according to the 
corners’ position information. This is carried out automatically (see Fig. 43) or set by the user 
(with the fingers). 

To detect connections created by finger gestures, the program has an internal counter to detect 
the finger motion pattern. If the finger stays on one pin for one second, the program determines 
that the user wants to make connections on this pin. A connection is set up by two pins, and the 
connection will show up in the tree view widget on the control panel.  Users can also clear the 
connections and delete a certain connection. 

This software interface that let us create a list of connections needs to integrate to the AWP GUI, 
so that the connections can actually be set. 

 

3.3.4. AWP Publications. 
The results of the work on the Adaptive Wiring Panel have been also published in: [2], [3]. In 
addition, results of Section 3.2.2 were submitted for publication to the AIAA Journal of 
Aerospace Computing, Information and Communication, and it is currently under review. 
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Figure 43. Automatic corner detection 
 

4.0. Conclusions. 

4.1. AFRL-UNM HERC Prototype. 
The AFRL-UNM HERC was conceived with the objective of exploring the advantages and 
disadvantages of a high-end reconfigurable computer, built using FPGAs as their main 
component. This exploration was constrained by limiting the system to applications involving 
space vehicles, and therefore, special attention was given to issues such as the system’s size and 
power consumption, as well as the power consumed by scaled versions of the system. 

An architecture satisfying these needs was proposed. Some of its features were implemented as a 
first prototype. Modularity and scalability of the system were achieved by interconnecting Basic 
Modules in a unique mesh topology. Ethernet and RocketIO were explored as alternatives for 
inter-modules communications, and a custom communication link was proposed and explored 
for inter-processor communications in a single module.  

The basic module was designed and implemented with the objective of obtaining the fastest 
possible single-processor system hosted by a FPGA.  Therefore, high-speed DDR2 memories 
were used in this design, a high-speed clock distribution and supporting systems implemented, 
and high-speed communication modules were included. The basic module was implemented with 
high-speed connectors (currently used as low-speed connectors), and a System Ace peripherals 
intended to provide HERC developments with expansion support and a high-volume storage 
system.  
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Other features were also included in the basic module. They are low-speed Analog to Digital 
Converters (ADCs), an USB-2 host peripheral intended to provide peripheral expandability to 
the system, and a low-speed network, common to all Basic Modules (BMs) in the HERC. 
Although partially implemented in the prototype of the HERC, these features allow future users 
to research more complex systems in this reconfigurable platform. 

The aforementioned hardware, and its power distribution system were implemented in a 
150mmx200mm, 20 layer printed circuit board. This PCB was especially designed to provide 
high-speed, controlled impedance traces in several interconnects, and to be area efficient. Two 
BMs, hosted by a high-speed data and a high-capacity power backplane, were built as a 
prototype of the proposed HERC.    

To support the communication between the multiple processors in the HERC, and to facilitate 
applications developing and execution, a version of the Linux operating system was ported to the 
BM. This OS was enhanced with customized network drivers, and a message passing 
communications engine based on OpenMPI was implemented. This software platform was 
chosen to allow future users of the AFRL-UNM HERC to be able to create hardware and 
software applications for this system in commonly available platforms, without the need of 
having their own HERC available. Additionally, special hardware was created to collaborate 
with this software platform, supporting the internal and external communication links in the 
system.  

 
4.2. Adaptive Wiring Panel. 
We have described an unusual architecture to interconnect (in principle) arbitrary electronic 
components together using a programmable manifold. The adaptive wiring concept, in one way 
of thinking, is an extension of the ideas of FPGA routing. The ideas clearly demonstrate that a 
considerable investment in overhead is required, even to do simple things, like turn on a light 
bulb. Similarly, FPGAs also come with considerable overhead. For a million gate systems, the 
overhead is often acceptable. The same level of overhead for a 10-gate FPGA, however, would 
be considered profligate. As such, the power and utility of AWM will likely become more 
appreciated with larger scale systems (DeHon described a similar phenomenon with Minnick’s 
work on cut-point cellular arrays in the 1960s, with a briefcase-sized system required to 
demonstrate a few tens of gates equivalent in expressive capacity[11]). The technology 
implications for fully adaptive wiring are potentially profound. Systems can be formed more 
quickly, resilient, and flexibly. The benefits come at a price, namely that of excess overhead, the 
need to make components (modules) “smart”, and the need to have tools, such as a synthesis 
engine, to manage the complexity of the dynamic wiring. Our initial work has progressed to a 
demonstration system with 48 cells. At this scale, we expect to find no technological surprises, 
but expect to uncover new insights of application potential and learn how to better cope with 
overhead. We expect to learn to balance global and local considerations (should tiles determine 
their own local routes?) and to optimize better the balance of switch and wire resources. Is there 
a benefit in extending these concepts to three dimensions, replacing the notions of smart tiles 
with “smart cubes”? Can we finally achieve breakthroughs in micro-electromechanical systems 
to allow us to economically implement a hundred thousand relays in integrated form instead of 
the painfully tedious discrete implementations of today? In the future, we may, instead of 
bringing modules into adaptive panels, find instead it is better to simply make all modules 
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adaptive in their own bundle of configurable wires, forming perhaps the ultimate form of 
configurable system. 

 

5.0. Recommendations. 
5.1. AFRL-UNM HERC Prototype. 
It was found that the performance of the BM, when benchmarked as a single-processor system, 
was in between the performance of an Intel Pentium microprocessor running at a clock frequency 
of 133 MHz, and an Intel Pentium II running at a clock frequency of 300 MHz. This comparison 
is an average of the results obtained of the benchmarking on the characteristics of systems built 
in the BM. The obtained performance, and the BM multiprocessor capabilities, places the BM in 
a high ranking when compared to similar embedded systems. This performance still can be 
improved if changes are made in the memory controller. 

The memory controller supporting the DDR2 memories on the BM imposed a serious bottleneck 
on the system. This is a memory controller available from Xilinx that interfaces the PLB bus 
with the DDR2 memory DIMM on the HERC. It was designed to only interface with a 100 MHz 
PLB bus despite the memory’s operating frequency. Additionally, it requires six clock lines for 
its operation, consuming FPGA clocking resources in a clock domain, enough to prevent an easy 
routing of other clocks with higher speeds. Therefore, it also prevents the microprocessor for 
being clocked at higher frequencies, or to use a higher frequency to clock the PLB bus. For this 
reason it was not possible to reach the highest frequency the system was designed to support, and 
the design, or the purchase, of a more appropriate memory controller is recommended. 

The results of benchmarking the communication links show that the AFRL-UNM HERC with 
processors hosted by an Ethernet network, exhibited a communication performance similar to 
clusters in other network platforms, such as in a cluster of Sun SparcStations, over 10Mbps 
Ethernet, or in a cluster of DEC 3000/300 workstations on a FDDI network. It is expected that 
future improvements in the performance of the BM single-processor characteristics, will 
substantially improve the execution rate of multiprocessor applications, due to a better utilization 
of the AFRL-UNM HERC network.     

The FPGA resource consumption of the systems implemented for the HERC operation indicate 
that a Virtex-4 FX 40 is the smallest FPGA where a single-processor BM system can be 
implemented, and that the Virtex-4 FX 60 is the smallest one where a multiprocessor 
implementation can be achieved. The prototype of the AFRL-UNM HERC built was 
implemented in a Virtex-4 FX 100 FPGA, which allowed building and studying complex BM 
implementations, while saving resources for future enhancements. 

It was also found that in a HERC where its BMs are interconnected by Ethernet links, up to ten 
of these links should be implemented in a Virtex-4 FX 100 to avoid depleting its resources, and 
at the same time, to leave enough space for the user’s hardware applications. In a HERC 
featuring RocketIO based communication links, fourteen links can be implemented before 
exhausting the global buffer resources in the FPGA.  

The power consumption analysis allowed obtaining important conclusions regarding the 
hardware characteristics that a HERC such as the proposed one should have.   It was found that a 
HERC made of Ethernet based inter board communication links consumed less power than its 
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equivalent made of Rocket IO links. However, as aforementioned, it was also found that resource 
utilization constrains a HERC from having more than ten Ethernet links per BM, or fourteen 
Rocket IO links. Counter intuitively, if a HERC with more than fourteen Rocket IO links could 
be possible of being implemented, its power consumption would be smaller than the power 
consumed by an equivalent HERC made utilizing Ethernet links. Additionally, except for BUFG 
resources, this HERC would not consume as many FPGA resources as its Ethernet based 
equivalent. This conclusion is especially important for future versions of the HERC, where 
FPGAs with more resources will be utilized. 

HERCs with a large number of Rocket IO communication links can be used in large space 
vehicles, featuring high capacity power distribution systems. In smaller space vehicles, they can 
be used for applications where processing would only occur in short periods of time. An example 
of such applications is radar processing, where its high power consumption constrains it to be 
used only during periodic bursts. The high power consumption of HERCs with Ethernet or 
RocketIO communication links can be ameliorated by instead using links based on LVDS or 
Hypertransport pairs. Although serial data transfers up to 3Gbps have been measured in short 
length LVDS lines, speeds of 600 to 800 Mbps are commonly reached when using this IO 
standard. The miniaturization of the HERC components will eventually result in short distances 
between BMs, and thus, short communication links. Therefore, a study of the feasibility of the 
use of LVDS links with simple serializer/deserializer modules to replace the HERC 
communication links is recommended. 

 

5.2 Adaptive Wiring Panel. 
5.2.1. Improvements of the Routing Algorithms. 
The current algorithm is based on a heuristic that uses the shortest path algorithm to get the 
solution for every connection pair. The order of the connections is first selected arbitrarily. If 
connections cannot be established, the order of the connections is shuffled in the hope that a 
solution will be found. This is continuously performed until the connections are established or 
the permutations are exhausted. 

However, it turns out that the algorithm computational time increases exponentially with the 
number of connection pairs. Moreover, it does not carry out an exhaustive search of the solution 
space, since each connection pair uses the shortest path (a non-shortest path could lead to more 
efficient solutions for the next connection pairs). 

Now that we have the AWP 2nd Prototype operating, it opens up the possibility of investigating 
routing algorithms (e.g., Steiner forest) that can provide nearly exhaustive searches of the 
solution spaces as well as realistic computational times. 
 

5.2.2. Set of Examples with More Detailed Circuits. 
The Adaptive Wiring Panel (AWP) has been demonstrated to work with our examples that 
include resistors, LEDs, and a battery. The next step is to develop a set of examples that include 
more varied components: DC motors, speakers, solar cells, current meter, alarm IC, etc. The set 
of examples will contribute to the development of the AWP User Guide. 
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5.2.3. Integration of the Improved Gesture Interface with the AWP Software. 
At the current moment, the gesture interface is used to specify circuit connections for the AWP. 
It has been shown to work well under certain conditions. The gesture interface is able to 
recognize circuit connections. However, a more robust interface needs to be developed. In 
addition, the robust gesture interface software needs to be integrated with the AWP software. 

 

5.2.4. Redesign of the Adaptive Wiring Panel (AWP). 
Here, we list a description of enhanced features the next AWP Prototype should have: 

 Distributed management approach: A new generation of the AWP that does not require an 
external master management unit for routing purposes will be developed. This approach will 
allow local routing decision to solve global routing problems. This implies providing each 
cell with a processing element (in addition to FPGA fabric) with tight constraints in terms of 
power consumption and size in order to support the goals of integration and low cost. Several 
alternatives of hard-core and soft-core processors will be surveyed to determine the best 
possible fit for this effort. 

 Miniaturization: We will assess the feasibility of the integration of the control logic inside the 
FPGA, the processing element, and the array of solid-state relays (we will be looking for 
latching relays) in a single die. This miniaturization and integration effort can dramatically 
reduce the size of the cell and its power consumption. It will also make more space to include 
all type of connections in the cell, such as optical and RF. 

 Incorporation of signals of different nature: This will extend the original AWP concept to a 
more universal solution, where the switch fabric includes power, optical, and RF signals. 
This will allow the network to perform in different scenarios and might potentially provide a 
universal solution for interconnection in aerospace systems. 

 Robustness: The Graphic User Interface (GUI) will perform basic testing prior to make the 
actual circuit connections in order to avoid connections that can damage the circuitry. For 
instance, user-specified connections that can potentially short battery terminals will be 
detected and not allowed. The SPICE format of the circuit allows us to perform SPICE 
simulation to detect damaging connections. In addition, components will be allowed to notify 
the system of possible failures detected through self-testing. In addition, we will consider the 
use of low-power transistors for routing analog and digital signals, and the design of low-
power relays for routing power. 

 Wireless circuit specification for the AWP: A new wireless communication system will 
eliminate the cable connections to the computer. Then, the finger-movements software 
routine will be integrated to the monitoring system for specifying circuit connections 
wirelessly. 
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Appendix A: AWP Software Reference Manual 
 
A.1. Description of the command-line AWP software routine. 
A.1.1. Basic concepts: cell array, graph, module array. 
We begin with the basic concepts that will be used for describing the AWP software routine: 
 Cell Unit: It is the smallest unit of the AWP. It consists of an FPGA that takes care of I2C 

communications with the computer and its cell neighbors. It also controls the relays. 

 Grid: It is an array of Cells whose arrangement is mechanically modifiable by the user. In the 
software routine, it is represented by the structure M. 

 Graph: It is the representation of the wiring mesh. Each Cell Unit contains the vertices Z1-Z3, 
Y1-Y12, X1-X16, and U1-U4. In addition, there are 71 relays (considered edges) to connect 
the vertices. The combination of all the vertices and edges for all cell units makes up the 
graph. In the software, it is represented by the structure G. 

 Module Array: It is array of modules (like those in Fig. 33). The modules are attached on top 
of the cell unit. In software, the module array is represented by Module_List. 

 Cell-level circuit: It is the set of pairs connected (represented by structure Circ) or to be 
connected (represented by structure C) at the cell-level, i.e. each pair is represented by 
<node_name>-<cell ID>. 

 Module-level circuit: It is the set of pairs connected (represented by the structure 
 Module_List->circuitry) at the module-level, i.e. each pair is represented by 
<module_node_name>. 

Figure 23 shows an example. 

A.1.2. Command-line Interface. 
A command-line interface has been developed in order to manage the AWP 2nd Prototype shown 
in Figure 33. In what follows, we provide a tutorial of the available commands. 

We initiate the interface using and generate the hardware grid using: 

a) mytest_i2c –interface 
AWP>>> generate_grid   It creates a connected grid of Cell Units, based on the Cells that 
were detected. Figure 4(b) shows an example where 6x8 cells were detected. 

 

AWP>>> connect A B  It connects two nodes. It requires the grid to be previously generated. 
Nodes are provided in the following format:  <node_name>-<cell ID> 

 Example: connect y1-03 y2-1E  Connects node y1 of cell 03 with node y2 of cell 1E 

AWP>>> unconnect circuit 

Disconnects the current closed relays and regenerates the grid. 

AWP>>> unconnect_all 
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Disconnects all relays and regenerates the grid. This command is useful after the program 
execution stops due to programming issues. When the interface is restarted, it does not know 
which relays were left closed. 

AWP>>> print circuit  Prints set of connected pairs. 

AWP>>> print grid  Prints current grid. 

AWP>>> print graph  Prints current graph: each node with its neighbors 

AWP>>> exit  Exits interface 

AWP>>> modules  Allows the issuing of commands at the module level, i.e. we only set 
connections on the module pins, or read the module array. 

AWP (module level) >>> read modules 

For each module, it reads the each module size, its orientation, its components, and the cell to 
which the module is attached to. Then, it maps the module pins to the corresponding cell pins. 

AWP (module level) >>> set_circuit 

It allows the specification of a circuit at the module level. A circuit is defined by a set of 
‘connection pairs’. Each connection pair connects a pin of a component with a pin of another 
component (or the same component). The format a connection pair is given by: 

Component A Component B 

Name Module Pin name Name Module Pin name 

 

         Example: Enter pair >>> R1 y1 R2 z3 

    Enter pair >>> C1 y1 R1 y2 

    Enter pair >>> exit 

AWP (module level) >>> connect once 

This instruction tries to make the list of connections. After making the connections, it gives 
control back to the user to execute other instructions. 

AWP (module level) >>> connect loop 

This instruction tries to make the list of connections. After making the connections, it enters into 
an infinite loop (which can be excited by the user at any time). The program routinely reads the 
cell grid and module array looking for changes. If there are changes and if the components in the 
circuit are still in place, it will re-route the paths to connect the circuit. 

AWP (module level) >>> print_circuit  Prints circuit (at module level) 

AWP (module level) >>> unconnect_circuit  Disconnects current circuit 

AWP (module level) >>> exit  Exit module level 

An alternative user interface for the AWP can be initiated using: 

b) mytest_i2c –interface_2 
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AWP>>> go  It enters a loop that repeteadly reads and displays the cell grid and the module 
array. The user can set the circuit at every iteration of the loop. The user can also exit the loop. 

When the message ‘Press ENTER to set circuit’ is displayed, the user can set the circuit by 
pressing ENTER. A circuit is defined as a collection of connection pairs. The interface allows 
the user to set several different circuits; this allows for an orderly setup. The user is provided 
with three choices: 

- new: It sets a new circuit 

- add: It adds connections to an existing circuit 

- mod: It deletes the connections within an existing circuit and sets new connections on 
that existing circuit 

 

 Format of a connection pair: 

Component A Component B 

Name Module Pin name Name Module Pin name 

 

Example: Enter pair >>> R1 Y5 V1 Z1 

  Enter pair >>> R1 Y8 L1 Y11 

  Enter pair >>> L1 Z3 V1 Z2 

  Enter pair >>> exit 

 After the circuit is set, the loop continues indefinitely, maintaining the circuits as much as 
possible when the grid and/or module array change. At any iteration, the user can modify, 
add, or delete the circuits at will. 

 This interface is very useful for the linkage with a Graphical Unit Interface (GUI) 
interface. It repeteadly displays the grid array and modules even when no circuit is set. 

 This interface differs from mytest_i2c –interface, that is more like a debug interface, in 
which modifying the circuit requires exiting the loop, and read both the grid and module 
again. 

 

AWP>>> exit: Exits interface 

A.1.3. Set of individual commands for AWP control 
The following commands take care of writing/reading the information contained in the 
AT24C08B I2C PROM memory included in each module. These commands should be used 
when the user requires the modification of data inside the module. The information consists of: 
module type and Spice-format list of components inside the module. In addition, it requires 
direct connection of the I2C pins of the VGA connector of the computer with the I2C pins of the 
to-be-modified module board. 

mytest_i2c –write_AT {# of Spice datasheet} 
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It writes data provided in a text file to the I2C PROM. No more than 256 characters can be 
written. The Spice datasheets are provided in a text file named I2Cprom-{number}.txt. 

Example of a text file for a module of size 5x10 and 4 components: 

5x10 

R3 V1 V2 330 

D3 V8 W3 HLMP-C100 

D4 Y11 Y8 HLPM-C100 

V2 W1 W2 6v 

mytest_i2c –read_AT    

Reads data from a I2C PROM. This is useful to verify the state of a I2C PROM. 

The interfaces described in Section A.1.2 made use of a set of functions that deal with the graph, 
the cell array (or grid), and the module array. For debugging purposes, some of those functions 
can also be executed from the command-line, albeit individually. Examples are given below. 

mytest_i2c <cell ID> -relays –{off,on} 

This opens (off) or closes (on) all relays of the indicated cell (cell ID) 

mytest_i2c –relays {off,on} 

This opens (off) or closes (on) all relays of every available cell 

mytest_i2c -scan  

It scans cells from address 2 to 127 (027F) and lists whether or not each cell exists. 

mytest_i2c <cell ID> -neighbors  Get neighbors' IDs (if any) of a cell defined by 'cell ID' 

mytest_i2c –grid  It creates a connected cell array (grid) with all the cells. 

mytest_i2c -connect <circuit number>  

Given a circuit (set of connections pairs), it connects all the pairs (if possible) by finding 
the shortest path (Dijkstra's algorithm) between them inside the graph  

Notes:  <circuit number> : Set of pre-defined circuits (1-6 are allowed) 

Example:  mytest_i2c -connect 1 

   Closes the relays in cell 'AB' so that all the pairs in 'circuit 1' are 
connected 

mytest_i2c –m <cell ID>  It reads and displays module information from indicated cell. 

mytest_i2c <cell ID> -relay <relay number> -{open, closed, status}  

Open, close, or get status of a relay in a cell 

Notes: <cell ID> is an hexadecimal number: 02 → 7F 

  <relay number> is a decimal number: 1 → 71       

  Examples:  
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  mytest_i2c AB -relay 64 –open  Opens relay 64 from cell 0xAB 

  mytest_i2c 0C -relay 12 –closed  Closes relay 12 from cell 0x0C 

  mytest_i2c 10 -relay 32 –status  Returns status of relay 32 of cell 0x10 

 

A.1.4. Commands for I2C communication with the AWP. 
The following commands handle the basic I2C communication between a computer and any I2C 
peripheral. The user can write a byte to a given I2C peripheral or read a byte from a I2C 
peripheral. For the AWP, the peripheral can be either the FPGA inside the cell or the I2C PROM 
inside the module. The commands listed in the previous section rely on these commands to 
communicate with the I2C peripherals. In addition, they are very useful for debugging purposes. 

mydebug_i2c -w <cell ID> <data> 

 Writes a byte (data) on a cell defined by 'cell ID' 

mydebug_i2c -r <cell ID> 

Reads a byte from a cell defined by 'cell ID' 

Notes: <data> is an hexadecimal number: 00 → FF 

 <cell ID> is an hexadecimal number: 00 → 7F 

  cell ID=00  The command is broadcast to each cell. When reading 

    the routine grabs data from the 1st cell that responds. 

  cell ID=01 is not allowed since 0x01 means inexistent cell. 

 

Examples: mydebug_i2c -w 02 FA  writes 0xFA on address 0x02 

  mydebug_i2c -r 03   reads a byte from address 0x03 

 

mydebug_i2c –s → Runs a scan of cells (027F) and lists the cells that exist. 

 

A.1.5. Code structure and libraries description 
The following is the file structure of the AWP command-line software. The ‘Makefile’ file takes 
care of the configuration for the ‘gcc’ compiler. Two executables are obtained: ‘mydebug_i2c’, 
and ‘mytest_i2c’. 

 mydebug_i2c.c  

   i2c.h 

   i2c-linux.c 

   my_i2c_commands.h 

 mytest_i2c.c 
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   i2c.h 

   i2c-linux.c 

   my_i2c_commands.h 

   my_i2c_macros.h 

   user_interface_functions.h 

   module_level_functions.h 

   grid_creation_functions.h 

   shortest_path_functions.h 

   priority_queue_functions.h 

 
The file i2c-linux.c contains the low-level functions to communicate with the I2C port of the 
computer. The i2c.h file is the header that lists those low-level functions. The other .h files are 
explained below. 
my_i2c_commands : It includes the basic functions for I2C communication. 

int debug_i2c(unsigned char address, unsigned char *data, char op) 

Performs a I2C read or write from/to address based on op ('w' or 'r'). 

int TypeI_fun(unsigned char cellID, unsigned char command, 

unsigned char relay, int oc) 

It writes a command and data (concatenation of relay number and close/open operation) to 
the I2C bus. No data retrieved. 

int TypeII_fun(unsigned char cellID, unsigned char command, 

unsigned char *o_data) 

It writes a command to the I2C bus. Then, it receives a byte from I2C bus. 

int TypeIII_fun(unsigned char cellID, unsigned char command, 

unsigned char **o_data) 

It writes a command to the I2C bus. Then, it receives a byte specifying the number of 
bytes 'n' to receive. Finally, it receives 'n' bytes. 

int TypeIV_fun(unsigned char cellID, unsigned char command,  
unsigned char i_data, unsigned char *o_data) 

It writes command and data to the I2C bus. Then, it gets a byte from I2C bus. 

int TypeV_fun(unsigned char word_address, unsigned char *data, char op) 

It reads data from the Atmel two-wire serial EEPROM AT24C08B. In other words, it 
sends a command to the FPGA inside a cell to read data from the module attached to it and 
forwards it to the computer. This command is very different from mytest_i2c –read_AT, 
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which is a stand-alone function that requires direct connection of the VGA port of the 
computer and the module pins. 

 

my_i2c_macros: It includes advanced functions for management of the AWP. It makes use of 
the functions defined in all the other .h files. 

int scan_neighbors(unsigned char address) 

It prints the IDs of the neighbors (if any) of the cell identified with ’address’. 

int scan_cells() 

It prints the list of all cells (from 2 to 127) indicating whether or not each one exists. 

int connect_graph(int circuit_number)  

It attempts to connect the list of pairs given by the circuit defined by 'circuit number'. 

int user_interface() 

It calls the user interface (cell level) described in Section A.1.2.a 

int user_interface_v2() 

It calls the user interface (cell level) described in Section A.1.2.b 

 
user_interface_functions: It includes high-level functions that perform user commands. 

int ui_generate_grid(Graph *G, Grid *M) 

It builds the grid (array of cells)and creates the graph based on the grid. 

int ui_unconnect(char* flag, Grid *M) 

It disconnects relays. flag=‘circuit’  disconnects current closed relays. flag=‘all’  
disconnects all relays. 

int ui_connect (Graph *G, Grid *M, Circuit *C) 

It connects a list of pairs (provided by structure C) using the shortest-path algorithm. 

 

module_level_functions: It includes high-level functions that deal with management of the 
module array. 

int module_print_circuit (Module_array *Module_List, Circuit* Circ) 

It prints the module-level circuit (provided by Circ) 

int module_define_circuit(Module_array *Module_List, Circuit *C) 

It accepts a list of pairs at module-level (user-input) and returns a list of pairs at the cell-
level, which is provided in C. 

void module_print(Module_array *Module_List) 

It prints a list of modules with all their information  
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int module_map(Grid *M, Module_array *Module_List) 

It converts a set of module-level pairs into cell-level pairs. The information is returned into 
Module_List. 

int module_read(Grid *M, Module_array *Module_List) 

It reads the available modules and retrieves the information into Module_List. 

 

grid_creation_functions: It includes advanced functions that deal with the cell array (or grid) 

int grid_shuffle_circuit(Circuit *C, Permut *P) 

It permutes the list of connected pairs (provided in structure C) according to the 
permutation provided by structure P. 

two_data grid_relay_get_number(char *A, char* B, Grid *M) 

It gets the index of the relay that connects pins A and B. 

void grid_relay_initialize (Grid *M) 

It builds a table of all possible pin pairs so that a relay can be identified later. 

int grid_create_graph(Graph* G, Grid* M) 

It builds the undirected graph that represents the Adaptive Wiring Panel wiring mesh. The 
graph can be built only after the cell arrangement is known. 

int grid_get_neighborhood(Grid *M) 

It reads every available cell along with its neighbors and stores them in a structure that 
represents the array of cells. 

int grid_build(Grid *M) 

It creates the grid (or array of cells) based on the information provided by 
‘grid_get_neighborhood’. The grid is defined by the list of cells as well as the arrangement 
which is obtained by this function. 

 

shortest_path_functions: It includes the functions that add and delete nodes from a graph, get 
vertex value, and get the shortest path solution for a connection pair. 

int graph_get_vertex_value (Graph *G, char* pin_name)  

It gets the node number at which 'pin_name' is located in the current graph. 

int graph_my_dijkstra(Graph* G, int source, int**T, int* d) 

Solves the one-to-all shortest path problem on graph G using Dijkstra's algorithm. It 
returns the edges and the key values of each node. 

void graph_print_results(int source, int edges, int nvertices, int **T, 
int *d, char** name_vertices) 

It prints the one-to-all shortest path solution provided by ‘graph_my_dijkstra’. 
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void graph_add_node(Graph* G, char *node_name, int n_neighbors, int* neighbors, int 
*weights) 

It adds a node to graph G (and the outcoming and incoming paths from/to the node) 

void graph_delete_node(Graph* G, int node) 

It deletes a node from the current graph (and the outcoming and incoming paths from/to the 
node). 

 

priority_queue_functions: holds the functions that implement a minimum priority  queue. 
These functions are used by ‘graph_my_dijkstra’ defined in the shortest_path_functions 
module. 

int parent (int i) 

 Gets the parent of a node. 

void min_heapify(two_data* heap, int *heap_size, int i) 

Let the value at heap[i] float down in the min-heap so that the subtree rooted at 'i' 
becomes a min-heap. 

void build_min_heap(two_data *heap, int *heap_size) 

 Given a heap with data, builds a min-heap. 

int heap_extract_min (two_data *heap, int *heap_size) 

 The node with the minimum key is extracted from the heap. 

void heap_decrease_key (two_data *heap, int i, int key) 

 Decrease the key of a node at position 'i'. 

 
A.2. Description of the Graphic Unit Interface (GUI) for the AWP project. 
The GUI system for AWP is a layer added to the command-line interface to enhance the user 
experience and to help visualize the working mechanism inside the system. It currently consists 
of one mouse-controlled interface and one camera capture interface. The mouse-controlled 
interface allows for complete control of the AWP. The camera interface that allows us to control 
the AWP via finger movement still experiences some problems, and as such, it has not been 
integrated with the Graphic Unit Interface (GUI). 

The mouse-controlled interface is shown in Figure A-1. The menu bar allows for some basic 
relay operation, help, etc. The Control Area includes a set of buttons that let the user modify the 
view and the operation type. The Display Area shows specific information about the AWP 
system. 
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Figure A-1. Layout of the mouse-controlled interface. 
 

The Display Area can show four (4) specific views, called ‘layers’: 

 Cell Array Layer: It shows the cells that are connected in the AWP system. Each cell is 
displayed as rectangle consisted of 4x4 small rectangles. Inside each cell, the lower-left 
rectangle side rectangle shows the cell ID. The other rectangles shown are the 15 pins on 
each cell. If a component exists in the AWP, the user can see its pins colored with same color 
and shown on the cell array.  A snapshot of this layer is shown in Figure A-2; here, 6x8 cells 
are interconnected. The idea is that the cell array is shown in real time, e.g. if a cell is 
removed, its corresponding rectangle will disappear from the view. 

 Module Layer: It shows the positions and orientations of the module boards plugged into the 
cell array. Two kinds of module boards (5x5 and 5x10) and four rotations (0º, 90º, 180º, and 
270º) are supported. The module position in this layer matches the cell position in cell array 
layer. Each module board shows an ID, this is the ID of the cell the module is plugged in. An 
example of this layer is shown in Figure A-3. Four module boards shown, two of them are 
5x5 boards while two others are 5x10 boards. 

 Circuit Layer: This layer shows the circuit components in the module boards. Each 
component appears with its name on its side. When this layer is in connection mode, the user 
can make connections by clicking on the terminals of each component (there is a small 
rectangle for each terminal of a component). When a terminal is clicked, the small rectangle 
is highlighted. A snapshot of this layer is shown in Figure A-4. 

 Link Layer: This layer shows the cells and the relays that are currently closed. If there are 
relays closed inside a cell, the cell turns green. By double-clicking the specific cell, the user 
can see the cell in detail with the condition of the relays (closed/open). An example is shown 
in Figures 37, 38, and 39 . Figure 37 shows an example circuit array connected in the system. 
Figure 38 shows the cells in which their relays are closed. Figure 39 shows the relays inside 
cell 62, the highlighted rectangle denotes a closed relay. 
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Figure A-2. Cell Array Layer, 9 components are plugged on the AWP. 
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Figure A-3.  Module Array Layer. 

 

Figure A-4.  Circuit Layer. 
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The control area is shown in Figure A-5. There are 3 separate framed areas in this area.  

 Layer operations: This area contains 4 buttons to change from layer to layer, each of them 
stands for one layer. Specially, for circuit layer, there are also buttons to move the 
components around and initialize them according to the user specifications. There is also the 
"start loop" button which controls the communication loop. It will turn green when the loop 
is running, and it will turn grey if the loop is stopped or paused. 

 
 Component Lists: This area contains a list that shows the modules and components in the 

AWP. There is a button to manually refresh the list. Also, there is a button to add connections 
in the circuit layer. Once the ‘add connection’ button is pressed, it will change color to red, 
the user waits until the ‘add connection’ notice dialog box shows up. Once the drawing is 
done, the user presses the same button which now is labeled as ‘finished connection’. At this 
moment, the AWP will get the user input and try to establish the connections.  

 Connect operations: This area contains a list shows the connection made. It also contains a 
button to make relay operations. Once a the relay button is pressed, a dialog will show up and 
ask for 4 operations: i) open all relays, ii) close all relays, 3) open all relays in a cell, and iv) 
close all relays in a cell. 

 

 

Figure A-5. Control Area. 
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Program structure 

The mouse controlled GUI is just a GTK wrapper for the command line system. The current 
version is V4.4. All the functions implemented are in ‘gui_command.h’ and ‘gui_test_i2c.c’.  
In ‘gui_test_i2c.h’, the main function is implemented and some global variables are declared.  
The gtk_main loop is executed in the main function. In ‘gui_command.h’, all accessory 
functions about the drawing and responding are included. The structure of the whole code is 
such that the gtk_main() loop takes care of the user response when an event occurs (button 
click, loop request to redraw area, etc.). Then, the corresponding registered code will be 
called to respond to it. An example function is shown in Figure A-6, which is used to 
determine if a point ‘p’ is inside the polygon or not. 

 

 

Figure A-6. Coding Style. 
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Appendix B: AWP Hardware Reference Manual 
B.1. Block Diagram of the Hardware Design in the FPGA. 
We present in Figure 1 the block diagram of the hardware design implemented in the FPGA 
using VHDL. The block diagram shows the dependency of all the VHDL blocks included in the 
design. Each block is explained in the next subsections. 
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 Figure B-1. Dependency diagram of the hardware blocks implemented with VHDL. 
 



    

65 

Approved for public release; distribution is unlimited. 

B.2 controller slave 
This is the main VHDL file. This module connects every single description file of the AWP 
project. The file used is "controller_slave.vhd". 

The entity of the file is described as: 

entity controller_slave is 

  Generic (Nbits_data : natural := 8;   

                    (Number of bits for the data in the I2C connection.) 

      Nbits_address : natural := 7;   

                    (Number of bits for the address in the I2C connection.) 

      N_relays : natural := 128);   

                    (Maximum number of relays per cell.) 

       Port ( resetn : in  STD_LOGIC;   

                    (External reset in negative logic.) 

         clock: in std_logic;   

                     (External clock oscillator @ 50MHz.) 

         addressn : in  STD_LOGIC_VECTOR(7 downto 0);   

                     (Address vector to define the ID of the cell.) 

              sda_pc : inout  STD_LOGIC;  

                     (SDA signal to the main PC.) 

              scl_pc : in  STD_LOGIC;   

                     (SCL signal to the main PC.) 

              sda_North,sda_East,sda_South,sda_West : inout  STD_LOGIC;   

                     (SDA signal to the 4 cell neighbors.) 

              scl_North : in  STD_LOGIC;   

                     (SCL signal to the north neighbor.) 

              scl_East : in  STD_LOGIC;   

                     (SCL signal to the east neighbor.) 

              scl_South : out  STD_LOGIC;   

                     (SCL signal to the south neighbor.) 

              scl_West : out  STD_LOGIC;   

                     (SCL signal to the west neighbor.) 

         relaysp : out  STD_LOGIC_VECTOR (70 downto 0);   

                     (Signals to control each external relay.) 

         scl_module_0 : out  STD_LOGIC;   

                     (SCL signal to detect the component at 0o.) 

              sda_module_0 : inout  STD_LOGIC;   

                     (SDA signal to detect the component at 0o.) 
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         scl_module_90 : out  STD_LOGIC;   

                     (SCL signal to detect the component at 90o.) 

              sda_module_90 : inout  STD_LOGIC;   

                     (SDA signal to detect the component at 90o.)          

               scl_module_180 : out  STD_LOGIC;   

                    (SCL signal to detect the component at 180o.) 

               sda_module_180 : inout  STD_LOGIC;   

                    (SDA signal to detect the component at 180o.) 

          scl_module_270 : out  STD_LOGIC;   

                    (SCL signal to detect the component at 270o.) 

               sda_module_270 : inout  STD_LOGIC   

                    (SDA signal to detect the component at 270o.) 

     ); 

        end controller_slave; 

 

B.3 myNewReset 
This block uses the file "softReset.vhd". The goal of this block is to produce an automatically 
internal reset of all the blocks in the AWP system once they are powered by first time.  

This block was added after the finding of the internal problem of the no synchronization of all 
the blocks when they were powered. 

Currently, the block is set to wait for 1 second before producing the 1-second internal reset. This 
internal reset is produced only once. 

The entity of the file is described as: 

entity softReset is  

      Generic ( 

    waitingLow : integer := 1; -- Time in SECONDS to wait   

               (Time in seconds to wait before producing the internal reset.) 

    longPulse : integer := 1-- Time in SECONDS to 'push' reset 

               (Time in seconds to 'press' the internal reset.) 

  ); 

      Port ( reset : in  STD_LOGIC;   

                (External reset in positive logic.) 

           clk50M : in  STD_LOGIC;   

                (External clock oscillator @ 50MHz.) 

           newReset : out  STD_LOGIC);   

                (New internal reset in positive logic to be produced.) 
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end softReset; 

 

B.4 loadAddress 
This block uses the file "registering_inputs.vhd". This block is an internal register to catch the 
signal lo load the ID designed to the cell. 

The entity of the file is described as: 

entity registering_inputs is 

    Generic ( Nbits : natural := 1   

                (Number of bits desired in the registered buffer.) 

    ); 

    Port ( reset : in  STD_LOGIC;   

                (External reset in positive logic.) 

           clk : in  STD_LOGIC;   

                 (External clock oscillator @ 50MHz.) 

           A : in  STD_LOGIC_VECTOR (Nbits-1 downto 0);   

                 (Input signal.) 

           B : out  STD_LOGIC_VECTOR (Nbits-1 downto 0));   

                 (Output signal.) 

end registering_inputs; 

 
B.5 AddressInput 
This block uses the file "registering_inputs.vhd". This block is an internal registered bus to catch 
the ID designed to the cell. 

 
B.6 N_PC 
This block uses the file "cell_slave_PC.vhd". This block is in charge of the communication with 
the external PC using the I2C protocol. The timing and signal types of this block were adapted to 
the signals produced by the I/O from the laptop using Linux. This block contains an internal state 
machine to control the communication with the PC. 

This block controls the block "i2c_slave_MAP", which uses the file "i2C_slave.vhd". This 
VHDL file is set up to work as a slave in the I2C protocol. 

The entity of the file "cell_slave_PC.vhd" is described as: 

entity cell_slave_PC is 

 generic ( 

     Nbits_data : natural := 8;   

                   (Number of bits for the data in the I2C connection.) 
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     Nbits_address : natural := 7);   

                   (Number of bits for the address in the I2C connection.) 

    Port ( clk50M : in  STD_LOGIC;   

                   (External clock oscillator @ 50MHz.) 

           reset : in  STD_LOGIC;   

                   (New internal reset in positive logic.) 

           load_address : in  STD_LOGIC;   

                   (Internal signal to load the address (ID of the cell).) 

           address : in   

              STD_LOGIC_VECTOR (Nbits_address-1 downto 0) := (others => '0');  

                   (Address (ID of the cell).) 

      load_data : in  STD_LOGIC;   

                   (Internal signal to load the data to be sent.) 

           data_in : in  STD_LOGIC_VECTOR (Nbits_data-1 downto 0) := x"01";   

                   (Data to be sent.) 

           scl : in  STD_LOGIC;   

                   (SCL signal to the main PC.) 

      data_ready : out std_logic;   

                   (Data read ready in the register.) 

           data_out : out  STD_LOGIC_VECTOR (Nbits_data-1 downto 0) := x"01"; 

                   (Data read.) 

           sda : inout  STD_LOGIC;   

                   (SDA signal to the main PC.) 

      busy : out STD_LOGIC);   

                   (Signal to indicate that the block is busy: a transfer is 

                    being processed.) 

end cell_slave_PC; 

 

The entity of the file " i2C_slave.vhd" is described as: 

entity i2c_slave is 

 generic ( 

  Nbits_data : natural := 8;   

                 (Number of bits for the data in the I2C connection.) 

  Nbits_address : natural := 7);   

                 (Number of bits for the address in the I2C connection.) 

    port ( reset : in  STD_LOGIC;   
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                 (New internal reset in positive logic.) 

           clk50M : in  STD_LOGIC;   

                 (External clock oscillator @ 50MHz.) 

           scl : in  STD_LOGIC := '1';   

                 (SCL signal for the I2C protocol.) 

      sda : inout std_logic;   

                 (SDA signal for the I2C protocol.) 

           load_address : in  STD_LOGIC;   

                 (Internal signal to load the address to be sent.) 

           address : in  STD_LOGIC_VECTOR (Nbits_address-1 downto 0); 

                 (Address to be used.) 

           load_data : in  STD_LOGIC;   

                 (Internal signal to load the data to be sent.) 

           data_in : in  STD_LOGIC_VECTOR (Nbits_data-1 downto 0);   

                 (Data to be sent.) 

           data_out : out  STD_LOGIC_VECTOR (Nbits_data-1 downto 0);   

                 (Data read.) 

           data_read : out  STD_LOGIC;   

                 (Data read ready in the register.) 

           busy : out  STD_LOGIC);   

                 (Signal to indicate that the block is busy: a transfer is 

                 being processed.) 

end i2c_slave; 

 

B.7 N_south 
This block uses the file "cell_master.vhd". This block is in charge of controlling the 
communication with the north neighbor. This block contains an internal state machine to control 
the communication with the other neighbor. The file uses the block "master_i2c", which depends 
on the file "main_master.vhd". The latter VHDL file is a master block to control I2C 
communications. 

 

The entity of the file "cell_master.vhd" is described as: 

entity cell_master is 

  Generic ( 

  Nbits_data : natural := 8;   

                (Number of bits for the data in the I2C connection.) 

  Nbits_address : natural := 7);   
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                (Number of bits for the address in the I2C connection.) 

    Port ( reset : in  STD_LOGIC;   

                (New internal reset in positive logic.) 

           clk50M : in  STD_LOGIC;   

                (External clock oscillator @ 50MHz.) 

           enable : in  STD_LOGIC := '1';   

                (Enable the block.) 

           sda : inout  STD_LOGIC := '1';   

                (SDA signal.) 

           scl : out  STD_LOGIC;   

                (SCL signal.) 

           data_ready : out  STD_LOGIC;   

                (Data read ready in the register.) 

           data_out : out   

              STD_LOGIC_VECTOR(Nbits_data-1 downto 0) := (others => '0');   

                (Data read.) 

       my_ID : in std_logic_vector(Nbits_data-1 downto 0) := "01101001"   

                (ID to be set up.) 

     ); 

end cell_master; 

 

The entity of the file " main_master.vhd" is described as: 

entity main_master is 

 generic ( 

  Nbits_data : natural := 8;   

                 (Number of bits for the data in the I2C connection.) 

  Nbits_address : natural := 7);   

                 (Number of bits for the address in the I2C connection.) 

   Port ( enable_master : in  STD_LOGIC;   

                 (Enable signal.) 

           readwrite_01 : in  STD_LOGIC;   

                 (Signal to select if a Read or Write transfer will be 

                  performed.) 

           reset : in  STD_LOGIC;   

                 (New internal reset in positive logic.) 

           clk50M : in  STD_LOGIC;   
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                 (External clock oscillator @ 50MHz.) 

           scl : out  STD_LOGIC := '1';   

                 (SCL signal.) 

           sda : inout  STD_LOGIC := '1';   

                 (SDA signal.) 

           load_address : in  STD_LOGIC;   

                 (Internal signal to load the address to be sent.) 

           address : in  STD_LOGIC_VECTOR (Nbits_address-1 downto 0); 

                 (Address to be used.) 

           load_data : in  STD_LOGIC;  

                 (Internal signal to load the data to be sent.) 

           data_in : in  STD_LOGIC_VECTOR (Nbits_data-1 downto 0);   

                 (Data to be sent.) 

           data_out : out   

                 STD_LOGIC_VECTOR (Nbits_data-1 downto 0) := (others => '0');  

                 (Data read.) 

           data_read : out  STD_LOGIC := '0';   

                 (Data read ready in the register.) 

           busy : out  STD_LOGIC := '1');   

                 (Signal to indicate that the block is busy: a transfer is 

                  being processed.) 

end main_master; 

 

B.8 catch_south 
This block uses the file "catch_data.vhd". This blocks works as register to store the data read by 
the I2C block described before. The goal is to reduce the noisy info that the block might be 
reading. If the block doesn't detect a new data in 't' us, then the other module was disconnected 
and a "0x01" value is produced. 

The entity of the file " catch_data.vhd" is described as: 

entity catch_data is 

  Generic (   

             cycles_to_wait : integer := 25   

                 (Time to wait for a new data. In the example,  

                   t = 25 = 250us.) 

      ); 

    Port ( reset : in  STD_LOGIC;   

                 (New internal reset in positive logic.) 
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           clk50M : in  STD_LOGIC;   

                 (External clock oscillator @ 50MHz.) 

           ready : in  STD_LOGIC;   

                 (Data from the I2C block is ready.) 

           data_in : in  STD_LOGIC_VECTOR (7 downto 0);   

                 (Data read.) 

           data_out : out  STD_LOGIC_VECTOR (7 downto 0)   

                 (Data registered.) 

     ); 

end catch_data; 

 

B.9 N_north 
This block uses the file "cell_slave.vhd". The goal of this block is to communicate with the south 
neighbor. This block controls the internal block "i2c_slave_MAP", which uses the file 
"i2c_slave_internal.vhd". This I2C block works as a slave for the I2C communication. 

The entity of the file "cell_slave.vhd" is described as: 

entity cell_slave is 

 generic ( 

  Nbits_data : natural := 8;   

                 (Number of bits for the data in the I2C connection.) 

  Nbits_address : natural := 7);   

                 (Number of bits for the address in the I2C connection.) 

      Port (  

           clk50M : in  STD_LOGIC;   

                   (External clock oscillator @ 50MHz.) 

           reset : in  STD_LOGIC;   

                   (New internal reset in positive logic.) 

           load_address : in  STD_LOGIC;   

                   (Internal signal to load the address to be sent.) 

           address : in   

              STD_LOGIC_VECTOR (Nbits_address-1 downto 0) := (others => '0');  

                   (Address to be used.) 

           scl : in  STD_LOGIC;   

                   (SCL signal.) 

 data_ready : out std_logic;   

                   (Data read ready in the register.) 

           data_out : out   
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               STD_LOGIC_VECTOR (Nbits_data-1 downto 0) := (others => '0');   

                   (Data read.) 

           sda : inout  STD_LOGIC);   

                   (SDA signal.) 

end cell_slave; 

 

The entity of the file " i2c_slave_internal.vhd" is described as: 

entity i2c_slave_internal is 

 generic ( 

  Nbits_data : natural := 8;   

                  (Number of bits for the data in the I2C connection.) 

  Nbits_address : natural := 7);   

                  (Number of bits for the address in the I2C connection.) 

    port ( reset : in  STD_LOGIC;   

                  (New internal reset in positive logic.) 

           clk50M : in  STD_LOGIC;   

                  (External clock oscillator @ 50MHz.) 

           scl : in  STD_LOGIC := '1';   

                  (SCL signal.) 

 sda : inout std_logic;   

                  (SDA signal.) 

           load_address : in  STD_LOGIC;   

                  (Internal signal to load the address to be sent.) 

           address : in  STD_LOGIC_VECTOR (Nbits_address-1 downto 0); 

                  (Address to be used.) 

           load_data : in  STD_LOGIC;   

                  (Internal signal to load the data to be sent.) 

           data_in : in  STD_LOGIC_VECTOR (Nbits_data-1 downto 0);   

                  (Data to be sent.) 

           data_out : out  STD_LOGIC_VECTOR (Nbits_data-1 downto 0);   

                  (Data read.) 

           data_read : out  STD_LOGIC;   

                  (Data read ready in the register.) 

           busy : out  STD_LOGIC);   

                   (Signal to indicate that the block is busy: a transfer is 

                    being processed.) 
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end i2c_slave_internal; 

 

B.10 catch_north, N_west, catch_west, N_east, catch_east 
These blocks are similar to the previous 3 blocks described. 

 
B.11 detecting_relays_and_sending_IDs 
This block is the 'brain' of the hardware. It decodes the instructions sent by the external PC and 
controls the blocks to control the external relays to perform the routing. The main file used is 
"main.vhd". Each controlled sub-block here will be described in the next subsections. 

The entity of the file "main.vhd" is described as: 

entity main is 

  Generic ( 

  N_relays : natural := 128;   

                 (Maximum number of relays per cell.) 

  Nbits_data : natural := 8   

                 (Number of bits for the data in the I2C connection.) 

    ); 

 Port ( reset : in  STD_LOGIC;   

                 (New internal reset in positive logic.) 

           clk50M : in  STD_LOGIC;   

                 (External clock oscillator @ 50MHz.) 

      busy_PC : in  STD_LOGIC;   

                 (I2C from PC is busy.) 

           data_ready_PC : in  STD_LOGIC;   

                 (Data ready from I2C from PC.) 

           data_in : in  STD_LOGIC_VECTOR (7 downto 0);   

                  (Data to be transfer.) 

           data_out : out  STD_LOGIC_VECTOR (7 downto 0);   

                  (Data read.) 

      load_data_PC : out  STD_LOGIC;   

                  (Load data from I2C from PC.) 

       my_ID, north_ID, east_ID, south_ID, west_ID, module_ID : in 

                  STD_LOGIC_VECTOR(Nbits_data-1 downto 0);   

                  (IDs from each cell, including the 4  

                      neighbors and the module.) 

       relays : out  STD_LOGIC_VECTOR (N_relays-1 downto 0);   
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                  (External relays to be controlled.) 

       scl_module_0 : out  STD_LOGIC;   

                  (SCL signal to detect the component at 0o.) 

           sda_module_0 : inout  STD_LOGIC;   

                  (SDA signal to detect the component at 0o.) 

      scl_module_90 : out  STD_LOGIC;   

                  (SCL signal to detect the component at 90o.) 

           sda_module_90 : inout  STD_LOGIC;   

                  (SDA signal to detect the component at 90o.) 

      scl_module_180 : out  STD_LOGIC;   

                  (SCL signal to detect the component at 180o.) 

           sda_module_180 : inout  STD_LOGIC;   

                  (SDA signal to detect the component at 180o.) 

      scl_module_270 : out  STD_LOGIC;   

                  (SCL signal to detect the component at 270o.) 

           sda_module_270 : inout  STD_LOGIC   

                   (SDA signal to detect the component at 270o.) 

     ); 

end main; 

 

B.11.a relays_map 
This block uses the file "read_write_relay.vhd". This block controls the opening and closing of 
the external relays to create the desired routing system. This block uses the type of command 
decoded by the system. 

The entity of the file is described as: 

entity read_write_relay is 

  Generic (        

            N_relays : natural := 128    

                 (Maximum number of relays per cell.) 

    ); 

    Port ( clk50M : in  STD_LOGIC;   

                 (External clock oscillator @ 50MHz.) 

           reset : in  STD_LOGIC;   

                 (New internal reset in positive logic.) 

           data_ready_PC : in  STD_LOGIC;   

                 (Data ready from I2C from PC.) 
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           typeI : in  STD_LOGIC;   

                 (A type I command is going to be processed.) 

      typeIV : in  STD_LOGIC;   

                 (A type IV command is going to be processed.) 

           data_in : in  STD_LOGIC_VECTOR (7 downto 0);   

                 (Data to be transfer.) 

           data_out : out  STD_LOGIC_VECTOR (7 downto 0);   

                 (Data read.) 

           load_data_PC : out  STD_LOGIC;   

                 (Load data from I2C from PC.) 

           relays : out  STD_LOGIC_VECTOR (N_relays-1 downto 0));   

                 (External relays to be controlled.) 

end read_write_relay; 

 

B.11.b send_IDs_block 
This block uses the file "send_IDs.vhd". This block controls the information about the IDs of all 
the parts related with the cell: cell ID, neighbors (4 in total) IDs, modules, and also the 
orientation of the module. 

The entity of the file is described as: 

entity send_IDs is 

  Generic (   

            Nbits_data : natural := 8   

                 (Number of bits for the data in the I2C connection.) 

    ); 

    Port ( reset : in  STD_LOGIC;   

                 (New internal reset in positive logic.) 

           clk50M : in  STD_LOGIC;   

                 (External clock oscillator @ 50MHz.) 

      typeII : in  STD_LOGIC;   

                 (A type II command is going to be processed.) 

      command_master : in  STD_LOGIC_VECTOR(7 downto 0);   

                 (Decoded command sent by the PC.) 

           my_ID, north_ID, east_ID, south_ID, west_ID, module_ID  : in 
STD_LOGIC_VECTOR(Nbits_data-1 downto 0);   

                 (IDs from each cell, including the 4 neighbors and  

                  the module.) 
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      module_orientation  : in  STD_LOGIC_VECTOR(Nbits_data-1 downto 0); 

                 (Orientation of the module connected to the cell.) 

           data_out : out  STD_LOGIC_VECTOR(Nbits_data-1 downto 0);   

                  (Data read.) 

           load_data_PC : out  STD_LOGIC);   

                  (Load data from I2C from PC.) 

end send_IDs; 

 

B.11.c detect_map 
This block uses the file "detect_type.vhd". This block decodes the command sent by the PC and 
generate the specific signals to control other blocks. It also activates specific flag signals 
depending on the type of command decoded. 

The entity of the file is described as: 

entity detect_type is 

    Port ( reset : in  STD_LOGIC;   

                (New internal reset in positive logic.) 

           clk50M : in  STD_LOGIC;   

                (External clock oscillator @ 50MHz.) 

      busy_PC : in  STD_LOGIC;   

                (I2C from PC is busy.) 

           data_ready_PC : in  STD_LOGIC;   

                (Data ready from I2C from PC.) 

           data_in : in  STD_LOGIC_VECTOR (7 downto 0);   

                (Data to be transfer.) 

      TypeI : out  STD_LOGIC;   

                (A type I command was decoded.) 

           TypeII : out  STD_LOGIC;   

                (A type II command was decoded.) 

           TypeIII : out  STD_LOGIC;   

                (A type III command was decoded.) 

           TypeIV : out  STD_LOGIC;   

                (A type IV command was decoded.) 

      TypeV : out  STD_LOGIC   

                (A type V command was decoded.) 

          ); 

end detect_type; 
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This block uses a Xilinx IP block generated by the CORE Generator: Block Memory Generator. 
It's a Single Port ROM that stores all the commands and their types. The file used is 
"commands_mem.xco" and the memory initialization file is "commands_mem.mif". 

 

B.11.d reading_module_map 
This block uses the file "reading_module.vhd". It controls the reading and status of the module 
connected to the cell. This block controls 4 different master I2C blocks to read the orientation of 
the module connected. It also makes a local copy of the datasheet of the module connected. 

The entity of the file is described as: 

entity reading_module is 

    Port ( reset : in  STD_LOGIC;   

                (New internal reset in positive logic.) 

           clk50M : in  STD_LOGIC;   

                (External clock oscillator @ 50MHz.) 

           TypeV : in  STD_LOGIC;   

                (A type V command was decoded.) 

           data_in_PC : in  STD_LOGIC_VECTOR (7 downto 0);   

                (Data to be transfer.) 

           data_ready_PC : in  STD_LOGIC;   

                (Data from the PC is ready to be read.) 

      data_out : out  STD_LOGIC_VECTOR (7 downto 0);   

                (Data read.) 

      load_data_pc : out  STD_LOGIC;   

                (Load data from I2C from PC.) 

      orientation : out STD_LOGIC_VECTOR (7 downto 0);   

                (Word to decode the orientation of the module connected.) 

      scl_module_0 : out  STD_LOGIC;   

                (SCL signal to detect the component at 0o.) 

           sda_module_0 : inout  STD_LOGIC;   

                (SDA signal to detect the component at 0o.)    

      scl_module_90 : out  STD_LOGIC;   

                (SCL signal to detect the component at 90o.) 

           sda_module_90 : inout  STD_LOGIC;   

                (SDA signal to detect the component at 90o.) 

      scl_module_180 : out  STD_LOGIC;   

                (SCL signal to detect the component at 180o.) 

           sda_module_180 : inout  STD_LOGIC;   
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                (SDA signal to detect the component at 180o.) 

      scl_module_270 : out  STD_LOGIC;   

                (SCL signal to detect the component at 270o.) 

           sda_module_270 : inout  STD_LOGIC   

                (SDA signal to detect the component at 270o.) 

     ); 

end reading_module; 

 

i) dual_memory 
This block uses a Xilinx IP block generated by the CORE Generator: Block Memory Generator. 
It's a Dual Port RAM that stores the datasheet of the module connected.  

The entity of the IP core is: 

ENTITY dual_mem IS 

 port ( 

       clka: IN std_logic;   

                  (External clock oscillator to write @ 50MHz.) 

       ena: IN std_logic;   

                  (Enable for the RAM write.) 

       wea: IN std_logic_VECTOR(0 downto 0);   

                  (Write or Read.) 

       addra: IN std_logic_VECTOR(9 downto 0);   

                  (Address for the data to be written.) 

       dina: IN std_logic_VECTOR(7 downto 0);   

                  (Data to be written.) 

       clkb: IN std_logic;   

                  (External clock oscillator to read @ 50MHz.) 

       enb: IN std_logic;   

                  (Enable for the RAM read.) 

       addrb: IN std_logic_VECTOR(9 downto 0);   

                  (Address for the data to be read.) 

       doutb: OUT std_logic_VECTOR(7 downto 0));   

                  (Data to be read.) 

END dual_mem; 

 

ii) reading_0, reading_90, reading_180, reading_270 
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This VHDL file is a master block to control I2C communications to read and detect the module 
connected to the cell. 

The entity of the file " main_master.vhd" is described as: 

entity main_master is 

 generic ( 

  Nbits_data : natural := 8;   

                  (Number of bits for the data in the I2C connection.) 

  Nbits_address : natural := 7);   

                  (Number of bits for the address in the I2C connection.) 

   Port (  enable_master : in  STD_LOGIC;   

                  (Enable signal.) 

           readwrite_01 : in  STD_LOGIC;   

                  (Signal to select if a Read or Write transfer 

                   will be performed.) 

           reset : in  STD_LOGIC;   

                  (New internal reset in positive logic.) 

           clk50M : in  STD_LOGIC;   

                  (External clock oscillator @ 50MHz.) 

           scl : out  STD_LOGIC := '1';   

                  (SCL signal.) 

           sda : inout  STD_LOGIC := '1';   

                  (SDA signal.) 

           load_address : in  STD_LOGIC;   

                  (Internal signal to load the address to be sent.) 

           address : in  STD_LOGIC_VECTOR (Nbits_address-1 downto 0);   

                  (Address to be used.) 

           load_data : in  STD_LOGIC;   

                  (Internal signal to load the data to be sent.) 

           data_in : in  STD_LOGIC_VECTOR (Nbits_data-1 downto 0);   

                     (Data to be sent.) 

           data_out : out   

                STD_LOGIC_VECTOR (Nbits_data-1 downto 0) := (others => '0');  

                     (Data read.) 

           data_read : out  STD_LOGIC := '0';   

                     (Data read ready in the register.) 

           busy : out  STD_LOGIC := '1');   

                     (Signal to indicate that the block is busy:  
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                      a transfer is being processed.) 

end main_master; 
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Appendix C: The AFRL-UNM HERC Prototype Details (from [1]) 
Here, we present the AFRL-UNM prototype in more detail, describe its hardware, its software, 
and discussion towards its miniaturization. Future users of the HERC will find this information 
useful to replicate it, enhance it, or to obtain a deeper understanding of the components utilized 
on it. 

The AFRL-UNM HERC prototype is a system composed of two Basic Modules hosted by a data 
backplane, and a power backplane. This configuration, shown in Figure C-1, allows simulating 
and studying the characteristics of the larger HERCs.  

Each Basic Module (BM) includes a Power Distribution System (PDS) integrated within its 
Printed Circuit Board (PCB). Modules also include components intended to facilitate the 
implementation and debugging of logic systems in its FPGA and to support the system’s 
operation.  With these components and integrated systems, a BM can be used as an independent 
dual processor reconfigurable system, or it can be easily integrated in more complex 
multiprocessor reconfigurable systems. We next describe the characteristics of the BM more in 
detail, and the techniques utilized in its design and manufacturing. 

 

C.1 Description of the Basic Module Prototype 
A photograph of the prototype AFRL-UNM HERC is shown in Figure C-2 with its main 
components labeled. 

Due to the large number of components that the BM requires, the high component density, and 
the special characteristics of the high-speed traces in the PCB, the board was designed to utilize 
twenty layers, a surface area 8 inches by 6 inches, and a thickness of 0.114 inches of FR4-IS410 
material. It is a through hole via and microvia board, with vias allowed in pads and plugged 
microvias under Ball Grid Array (BGA) components. This board has eight layers dedicated to 
supporting high-speed signal routing, two layers used for low-speed routing, nine solid planes for 
power distribution, and one layer used for miscellaneous power distribution.  

Table C-1 identifies the layers of the PCB and their functionality, providing for both signal lines 
and power distribution. It is important to note that each layer used for routing high-speed signals 
is in between solid planes to aid in obtaining controlled impedance in the traces. Also, these 
high-speed lines, such as those used for the Rocket IO network, clock distribution and the DDR2 
memory paths were carefully planned, measured, and routed. These signals had to be length 
matched, impedance controlled, and in some cases, terminated with specific resistances. 
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Table C-1. Layer and Signal Distribution on the AFRL-UNM BM PCB 
 

Layer Type Traces 
1 High-Speed Signals Clocks, Other High-Speed 

2 Solid Plane Ground 

3 High-Speed Signals Rocket IO 

4 Solid Plane Ground 

5 High-Speed Signals Rocket IO 

6 Solid Plane Ground 

7 Solid Plane Power 1.2 V 

8 High-Speed Signals Memory A 

9 Solid Plane Power 2.5 V 

10 High-Speed Signals Memory A 

11 Solid Plane Power 1.8 V 

12 High-Speed Signals Memory B 

13 Solid Plane Power 3.3 V 

14 High-Speed Signals Memory B 

15 Solid Plane Power 0.9 V 

16 Signal Low Speed Signals 

17 Power Traces Mixed Power  

18 Signal Low Speed Signals 

19 Solid Plane Ground 

20 High-Speed Signals Clocks, Other High-Speed 
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Figure C-1. The AFRL-UNM HERC Prototype. 
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Figure C-2. Main components of the AFRL-UNM BM. 
 

C.1.1 Power distribution on the Basic Module 
Designing and implementing the power distribution system in the Basic Module was not a trivial 
task. A first concern on the design of the PDS is that since the HERC is a reconfigurable system, 
the power consumption characteristics of the circuitry that will be implemented in the BM are 
not known. Therefore, the PDS had to be capable of providing low ripple voltages to a wide 
range of circuits with different power requirements. A conservative approach had to be utilized 
in its design, where a large number of bypass capacitors and wide power traces had to be used. 
Also, high-capacity voltage regulators had to be used to assure that large currents would be 
properly regulated.  

A second challenge in the Power Distribution System design is to successfully generate the wide 
range of voltages the system requires, and to route them to the numerous and densely placed 
components in the PCB. High-speed communications modules, for instance, cannot be powered 
with the same switching power voltage adapters used for powering other components of the 
system. The use of linear regulators is necessary to satisfy their stringent power requirements. 
Therefore, the BM contains fifteen power regulators, five switching voltage regulators and ten 
linear voltage regulators. 
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The AFRL-UNM BM requires seven different voltages to be generated, as shown in the block 
diagram of the Voltage Generation System in Figure C-3. These voltages are generated from a 
high-current five volt input, and are distributed to the BM’s components through solid planes, 
and through specially designed power traces buried in the internal layers of the PCB. Although 
the Power Distribution System was designed to provide power up to 100 Watts, the larger system 
tested in this manuscript utilized only half that amount. However, higher power consumptions 
are expected in circuits requiring a more extensive use of the FPGA resources. 

 

 

Figure C-3. Block Diagram of the AFRL-UNM BM Voltage Distribution System. 
 

C.1.2 Clock Generation and Distribution System of the AFRL-UNM BM    
The Clock Generation and Distribution System (CGDS) of the AFRL-UNM BM was designed to 
be flexible and sufficient for the general-purpose applications that could be synthesized in the 
HERC. It is composed of two synthesized external clocks, afixed external clock and four high-
precision clocks used to feed the Rocket IO MGT modules. These clocks and the Digital Clock 
Management (DCM) units embedded in the FPGA allow multiple clock combinations to be 
utilized in the BM. 

As shown in Figure C-4 and as mentioned above, two external clocks are synthesized. In this 
case, they are externally generated from a 33 MHz clock by a clock synthesizer, and linked to a 
global clock input of the BM’s FPGA. This generated frequency can be chosen through a parallel 
or a serial input of the clock synthesizer. In the AFRL-UNM BM, the parallel input can be 
externally set using resistors, while the serial input is driven by the FPGA. This clock strategy, 
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commonly used in high-speed systems, allows a dynamic change of the externally generated 
clocks. Despite the parallel ports of the clock synthesizers were fully implemented in the BM, 
communications with the serial port are left for future implementations. 

 

C.1.3 JTAG Chain  
The JTAG chain of the HERC was designed to allow multiple options for device 
interconnection. In a BM, it can be configured to chain a JTAG port to the System ACE and to 
the FPGA, or to only interconnect the JTAG port and the FPGA. The JTAG chain can also be set 
to allow multiple BM devices to be interconnected. For example, a chain composed of the JTAG 
port, the System ACE and the FPGA in a BM, and a second FPGA in the other BM is possible. 
Using this option, multiple FPGAs can be configured from a single Compact Flash or JTAG 
port, and can be debugged from a single port.   

 

C.1.4 The DDR2 Memories and Memory controllers 
The BM features two PC2-4200-R DDR2 memories independently attached to the Virtex-4 
FPGA. These memories can be paired with each embedded PowerPC, can be used by one of 
these microprocessors, or can be used by customized systems implemented in the FPGA.  

The DDR2 memory layout was implemented to conform to the specifications of the most 
demanding memory controllers. In a DDR2 memory, the signals that are utilized in transferring 
information are divided into four groups, each with different routing and spacing requirements.   
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Figure C-4. Clock Generation and Distribution System (CGDS) of the AFRL-UNM BM 
These are a Data Group, an Address and Command Group, a Control Group, and a Clock Group. 
In the AFRL-UNM BM, each group was routed separately from the lines that composed other 
groups, and all the signals in each group were length matched.  

Length matching the signals in the data group required a considerable effort, since this group is 
composed of over a hundred lines. Concerned about this requirement, the large amount of space 
utilized, and its design and manufacturing cost, memory designers have reorganized the data 
lines into smaller groups for newer memory controllers. These group lengths need only to be 
matched among the lines that compose a group, and to an extra line added as a signal strobe. 
Unfortunately, the routing of the memories in the AFRL-UNM BM did not allow using that 
advantage.  

To interface the DDR2 memory and any other circuit in the FGPA, it is necessary to use a 
memory controller. This is a hardware module that provides the necessary commands to 
initialize, read and write the memory and handle memory refresh cycles. Currently, Xilinx 
provides a memory interface generator used when the memory controller will be attached to a 
microprocessor, and another memory interface generator used for general-purpose cases. They 
are the PLB Double Data Rate (DDR2) Synchronous DRAM (SDRAM) Controller, and the 
Memory Interface Generator (MIG) respectively.  At the time the BM board was designed, MIG 
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required all signals in the DDR2 memory bus to be length matched, and half-length matched to 
an extra looped line. Therefore, to allow the use of all possible memory controller generators, the 
routing of the AFRL-UNM BM complied with this requirement. Figure C-5 shows a detail of 
one of the layers used for the DDR2 routing, where the meandering routes used to length match 
the traces and the aforementioned looped line are shown. 

Using the PLB Double Data Rate (DDR2) Synchronous DRAM (SDRAM) Controller in the 
HERC required a collaborative effort with Xilinx to debug it and correct some of its 
characteristics. Once a working system was obtained, ten different tests were applied to exercise 
the DDR2 memory. These tests are a ChessBoard test, its reversed version, a 0s&1s test, an 
incremental data value test, the address reversed versions of these tests, a four memory positions-
ahead test and a Xilinx-provided memory test.  

In a ChessBoard test, even memory positions are written with an alternate series of one and 
zeroes (starting with a zero). Odd memory positions are written with similar data, but starting 
with a one. Then the memory is fully read, hoping that no discrepancies between the written and 
the read information are found. The reversed version of this test was also applied. In this case, 
the same testing procedure is performed but reversing the values written into odd and even 
memory positions. Figure C-6.a shows that the patterns formed in the memory by this test 
resemble a chessboard. 

0s&1s memory test is a simple test where every odd memory positions are filled with 
0xFFFFFFFF. In a similar fashion, every even memory position is filled with zeroes. As in the 
previous test, once the memory is written, it is read, and their values are compared looking for 
consistent memory records. The reversed version of this test is similar in procedure. Figure C-6.b 
shows the memory patterns formed in memory by this test.  
 

 

Figure C-5. Detail of the routing of the AFRL-UNM BM DDR2 memory bus 
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Figure C-6. Data Patterns obtained in different memory tests. a) ChessBoard Memory test, 
b) 0s&1s Memory test, c) Incremental Data Memory test, d) Four Memory Positions-Ahead 

test 
 

The incremental data value test saves different numbers in different memory positions. 
Commonly, it is used to tag each memory position with the value of its address. Figure C-6.c 
shows an example of the data recorded with this test. Its address-reversed version consists on 
repeat it starting from the last position of the memory and ending in the first position.  

The last two memory tests applied were a four memory positions-ahead test and a memory test 
provided by Xilinx. The first one consists on sequentially writing four different values on four 
consecutive memory positions. This is illustrated in Figure C-6.d. The test continues by reading 
these memory locations and assuring data consistency. It is intended in this case, to evaluate the 
memory’s capability for writing and reading bursts of data. As interleaved, burst-oriented 
memories continue to be a standard, verifying this feature is becoming important. Finally, Xilinx 
provided memory test reads and writes a sequence of four random values in bytes, double-bytes, 
half and full word to four random memory locations. These memory positions are read and 
compared with the written values looking for data consistency. 

Besides verification of successful data storing and retrieval, the correct behavior of the memory 
system was validated for a small range of clock frequencies and distributions. The memory 
controller has been tested for bus clock frequencies of 100 MHz on the PLB version and 
100MHz and 66MHz in OPB version, and for DDR2 clocks of 133, 200 and 266 MHz. Given the 
dual clock data rate featured on DDR2 memories, 266, 400 and 533 MHz can be achieved for 
data transfer. This last frequency is the maximum one used by the BM DDR2 memory system. 
Clock distributions of 200 and 266 MHz with a 100MHz PLB clock frequency were also 
successfully verified. 

 

C.1.5 High-Speed networks 
The prototype of the AFRL-UNM BM has three high-speed connectors; two used for 
interconnecting twenty Rocket IO communication links to other BM boards, and one carrying the 
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links for a common bus network and the JTAG chain. Although these connectors are designed to 
carry data transmissions up to 6 Gbps, successful performance up to 10 Gbps has been reported. 
In the AFRL-UNM HERC, successful data transmission using the Rocket IO links has been 
measured at a rate of 6.25 Gbps.  

The traces used for Rocket IO, as well as half of the common bus network, were designed to 
support high-speed data rates. Traces with 50 Ohms controlled impedance and 100 Ohms cross-
impedance were used to interconnect the Rocket IO to its connectors and other transceivers. In 
the design process, special care was taken to utilize an intact reference plane in order to avoid 
impedance discontinuities. No vias, except at the beginning and end of the Rocket IO, lines were 
used. Also no layer-to-layer changes were allowed for the high-speed signals. Every Rocket IO 
pair was separated from other lines to diminish electromagnetic interference between them. 
These characteristics allow in theory reaching speeds of 10.3125 Gb/s through 16 inches of FR4 
material.  However the material used in the AFRL-UNM BM (FR4-IS410), although still an 
FR4, has improved dielectric characteristics over other materials in its family, and it is expected 
to be able to handle higher speeds in longer traces. 

 

C.1.6 System ACE 
The AFRL-UNM BM includes a System Advanced Configuration Environment (System ACE) 
that supports Compact Flash Memories with data storage capabilities up to 4 GB. The System 
ACE is a module composed of a controller device (ACE controller) and a Compact Flash storage 
device (ACE Flash). It provides a configuration solution for one or more FPGAs, and in addition, 
a microprocessor interface for utilizing the ACE Flash as a peripheral. 

In the AFRL-UNM BM, the System ACE can be used to configure, upon reset, every Virtex-4 
FX 100 in the JTAG chain FPGA. The System ACE is therefore, the first device that should be 
encountered in the JTAG chain of a series of BMs. Once configured, each BM can use the 
system ACE on its board as storage peripheral. For this purpose, the ACE Flash is divided into 
three partitions, two used as a filesystem, and the remaining one used for boot configuration.  

 

C.1.7 Ethernet support 
 

Each AFRL-UNM BM contains an Intel LXT971 PHY device operating at 10/100 Mb/s. This 
device is connected to the FPGA, and to its embedded Ethernet MAC, through a MII interface. 
The PHY is connected to a HALO Magnetic Isolation Module and a RJ-45 connector. To 
implement a small Ethernet network test platform, each BM was connected to an Ethernet switch 
with routing capabilities. This network was complemented with two dedicated Personal 
Computers (PC). These PCs were then used to remotely access and exercise the BMs.  

To verify the correct functionality of the Ethernet module, Xilkernel, a light, tunable OS kernel 
that supports the POSIX standard and processes scheduling strategies, was used to implement a 
small Webserver on the AFRL-UNM BM. Xilmfs and Lwip were executed by this OS kernel, 
providing the application support for file systems and TCP/IP stacks. With this webserver, TCP 
requests were listened and answered through the HTTP port, allowing general-purpose pins to be 
remotely sensed and controlled through a web page.  
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C.1.8 Other Peripherals and connectors on the BM 
Other peripherals on the AFRL-UNM BM are a host USB-2 Serial Communications port, two10-
bit / 200 KSPS Analog to Digital Converters (ADC), a group of general-purpose LEDs, and 
Switches. Each BM has also two general-purpose connectors, used to host external expansion 
boards. Using one of these connectors, two RS-232 UARTs and an extra II-C flash memory have 
been added to the Basic Module.  

Although fully implemented in the BM, the testing and the integration of the USB-2 port and the 
ADCs to the OS are left for future work. These peripherals were included to allow future users of 
the HERC to add more capabilities to the system, such as external Hard Disk Drives (HDD), 
wireless interconnection or remote sensor data capturing. The Basic Module can also be 
expanded with eight more ADCs, using some lines shared with one of the DDR2 memories. 
Therefore, a PCB containing these ADC connectors should have the same dimensions as a 
DDR2 DIMM and should be used in place of the memory DIMMs.    

 

C.2 Backplanes and Physical Scaling of the HERC 
As mentioned above, the HERC prototype includes two backplanes, one for power distribution, 
and one used to carry data signals. The power distribution backplane is manufactured with 4 oz, 
dual side cooper planes intended to not only provide a high current transport (20 A) but also to 
create a large capacitive effect.  They utilize four female 90 degrees connectors, mated to the 
power socket connectors of the BM, and two input power connectors. The data transport 
backplane features 20 differential pairs with 50 Ohm controlled impedance lines, and 100 Ohm 
cross-impedance lines  used for Rocket IO serial communications. They cross-interconnect every 
high-speed output on each BM’s high-speed connectors. The data transport backplane also 
features 16 single low-speed lines for data broadcasting, and 4 traces used for JTAG board 
interconnection. 

Using the same interconnection strategy, these backplanes can be easily expanded to host more 
BM boards. Figure C-7 shows a conceptual model of a system composed of five Basic Modules 
in a single backplane. It is left for future research to investigate the feasibility of scaling the 
HERC to systems with larger numbers of BMs. However, Figure C-8 and Figure C-9 demostrate 
how these systems could be arranged in situations where space is a major constraint.    
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Figure C-7. Conceptual model of a HERC composed of five BMs 
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Figure C-8. Conceptual model of a HERC with twenty BMs 
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Figure C-9. Conceptual model of eighty BMs in a HERC 
 

C.3 Description of the HERC’s software 
The software portion of the HERC is mainly composed of Montavista Linux as its Operating 
System, OpenMPI running over RSH used as the message passing engine, and a networking 
driver, which is a Linux kernel module used to interface the high-speed networks with the 
Operating System.  

 

C.3.1 Linux on the AFRL-UNM HERC 
Montavista Linux 4.0.1 with kernel 2.6.10, and Montavista Linux 3.0.1 with kernel 2.4.20 were 
ported to the AFRL-UNM HERC. A customized Linux kernel version was also compiled and 
ported to the system from the kernel sources available at kernel.org. However, the development 
of this distribution was not continued due to the excessive amount of effort necessary to port 
every software packet required by a fully functional OS. Although Montavista Linux can be 
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successfully used in future versions of the HERC, its high cost resulted in continuing 
development utilizing another Linux distribution. 

 

C.3.2 The Networking Drivers 
The Networking Drivers developed for the communication links of the AFRL-UNM HERC are 
based on the Network Utility that is a functional template that provides examples on how to 
register a driver against the kernel, how to initialize it, open it and clean the kernel when 
stopping it.  

The first activity executed when the network driver is inserted in the operating system is to create 
and register a networking device. A name is assigned to that device, and its communications 
structure is created. A second step on the successful configuration of this driver involves the 
user’s action. The user assigns some properties to this driver, such as its IP address, network 
mask and its status on the system. Using this information, an application wanting to use the 
communications hardware associated with the networking driver simply identifies the IP address 
of receiver party. The Operating System calls the driver passing the information to be transmitted 
to the driver’s communications structure. 

The driver’s initialization also includes setting up the communications hardware. It reserves I/O 
addresses, registers the communication peripheral’s interruptions to the operating system, and 
sets the involved peripherals to be ready for transmission and reception of data. Finally, the 
driver also contains the interrupt service routine (ISR), which is involved when data arrives at the 
communications hardware.  

The networking driver and the hardware implemented for the high-speed communications were 
designed to reduce the amount of computation time dedicated by the microprocessor in the 
communication process.  In low-speed communication devices, an interrupt request is issued and 
processed each time a character arrives. However, if this strategy would be used in high-speed, 
congested networks, the processor would be constantly interrupted, consuming most of their 
processing time. To alleviate this situation, a strategy combining register pooling and 
interruptions is used. In this case, FIFO structures are used in the hardware reception paths, only 
interrupting the processor when the FIFO is partially full. The driver then reads all available 
characters in the FIFO.  

The communications hardware of the AFRL-UNM HERC implements a packet control module 
that prevents the microprocessor from being interrupted until the reception of an Ethernet packet 
is identified. In a common situation, the networking driver reads a group of characters from the 
receive FIFO, and provisionally stores them in memory. It only sends the characters to the OS 
when a complete Ethernet packet is received. The implemented system takes advantage of that 
by mapping this process into hardware, executing the aforementioned process without the 
microprocessor’s intervention. 

 

C.4 Miniaturization of the AFRL-UNM HERC 
Initial efforts were started to miniaturize the AFRL-UNM HERC. General Electrics Research 
(GE Research), with the collaboration of the Embedded Systems and DSP laboratory of the 
Electrical and Computer Engineering of the University of New Mexico, started the 
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miniaturization of the DDR2 memories of the HERC. Here, a three-dimensional stack composed 
of the DIMM components was to be created. An initial prototype were to be developed in which 
a simplified version of the stack would be mounted in a conventional DDR2 DIMM board and 
hosted by one of the memory sockets in the AFRL-UNM BM. This prototype would prove the 
feasibility of this solution, while allowing the researchers to study the challenges this solution 
presents. 

Simultaneously, a first approximation to a denser packaging for the AFRL-UNM HERC was 
proposed. In this version, shown in Figure C-10, the main components and modules of the 
system will be enclosed in a protective shell, surrounded by connections to the HERC networks 
and to its external peripherals. Although this approximation still requires studies on the 
integration of complex systems such as the HERC and on its power dissipation, the prototype it 
proposes could led to significant advances on the implementation of HERCs with large numbers 
of BMs. 

 

 

Figure C-10. Model of the proposal of an advanced packaging of the AFRL-UNM HERC 
BM (Used with permission of General Electric Research). 
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